The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Answer:

Explanation:
We have given number of turns N = 560
Inductance L = 8.9 mH
Current through the coil = 7 mA
Inductance of the coil is given as 
Where N is number of turns I is current and
is flux
So 
Answer:
Pressure applied to the needle is 7528 Pa
Explanation:
As we know by poiseuille's law of flow of liquid through a cylindrical pipe
the rate of flow through the pipe is given as

now we know that

radius = 0.2 mm
Length = 6.32 cm

now we have



now we have


I’m assuming we’re suppose to get some kind of graph but, Instantaneous speed is the speed that is happening right now. Like driving a car at 15k/h. The instantaneous speed of the car 15k/h. On the graph, at 5s. Wherever the line is, will tell you what the speed is.