Answer:
I hope it is no too late
Explanation:
hmmm,
In a gas, for example, the molecules are traveling in random directions at a variety of speeds - some are fast and some are slow. ... If more energy is put into the system, the average speed of the molecules will increase and more thermal energy or heat will be produced.
She can climb 0.92 m without losing weight.
<u>Explanation</u>:
Gravitational potential energy is the energy consisting of the product of mass, gravity and height.
1 cal = 4184 J
140 cal = 585760 J
Energy = 585760 J, m = 65.0 kg = 65000 g, Efficiency = 20 %
GPE = mgh
where m represents the mass
g represents the gravity,
h represents the height.
585760 = 65000
9.8
h
h = 0.92 m.
Given data:
* The mass of the ball is 2 kg.
* The gravitational field strength at the surface of planet X is 5 N/kg.
Solution:
The weight of the ball on the planet X is,

where m is the mass of ball, a is the gravitational field strength,
Substituting the known values,

Thus, the weight of the ball on the surface of planet X is 10 N.
The kinetic energy is the same as the potential energy of raising it 40cm (0.4m). That's mgh where m is mass of ball. Its then 3.924*m, whatever m is equal to in kg.
Answer:
Explanation:
An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.