Explanation:
It is given that,
Diameter of loop, d = 1.4 cm
Radius of loop, r = 0.7 cm = 0.007 m
Magnetic field, 
(A) Magnetic field of a current loop is given by :

I is the current in the loop


I = 27.85 A
(B) Magnetic field at a distance r from a wire is given by :



r = 0.00222 m

Hence, this is the required solution.
Answer:
Most of the stars occupy the region in the diagram along the line called the main sequence. During the stage of their lives in which stars are found on the main sequence line, they are fusing hydrogen in their cores.
Answer:
Explanation:
A pressure that causes the Hg column to rise 1 millimeter is called a torr. The term 1 mmHg used can replaced by the torr.
1 atm = 760 torr = 14.7 psi.
A.
120 mmHg
Psi:
760 mmHg = 14.7 psi
120 mmHg = 14.7/760 * 120
= 2.32 psi
Pa:
1mmHg = 133.322 Pa
120 mmHg = 120 * 133.322
= 15998.4 Pa
B.
80 mmHg
Psi:
760 mmHg = 14.7 psi
80 mmHg = 14.7/760 * 80
= 1.55 psi
Pa:
1mmHg = 133.322 Pa
80 mmHg = 80 * 133.322
= 10665.6 Pa
Answer:
Position-Time graphs display the motion of a object by showing the changes of velocity with respect to time.
The motion of a car on a position-time graph that is represented with a horizontal line indicates that the car has stopped moving.
A straight line with a positive slope indicates that the car is moving at a constant velocity, and thus the slope is constant. On the other hand, a curve with a changing slope, shows that the velocity is changing.
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to

where

is the charge density

is the vacuum permittivity
We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate: