The erroneous theory of Galileo was that tides were a result of the earth's what he called the inconsistent revolution around the sun. He was right about the most important thing of the earth revolving around the sun but didn't realize that the moon (and sun) exert a gravitational pull on the earth's oceans and cause the diurnal tides to occur.
Answer:
v1 = 15.90 m/s
v2 = 8.46 m/s
mechanical energy before collision = 32.4 J
mechanical energy after collision = 32.433 J
Explanation:
given data
mass m = 0.2 kg
speed = 18 m/s
angle = 28°
to find out
final velocity and mechanical energy both before and after the collision
solution
we know that conservation of momentum remain same so in x direction
mv = mv1 cosθ + mv2cosθ
put here value
0.2(18) = 0.2 v1 cos(28) + 0.2 v2 cos(90-28)
3.6 = 0.1765 V1 + 0.09389 v2 ................1
and
in y axis
mv = mv1 sinθ - mv2sinθ
0 = 0.2 v1 sin28 - 0.2 v2 sin(90-28)
0 = 0.09389 v1 - 0.1768 v2 .......................2
from equation 1 and 2
v1 = 15.90 m/s
v2 = 8.46 m/s
so
mechanical energy before collision = 1/2 mv1² + 1/2 mv2²
mechanical energy before collision = 1/2 (0.2)(18)² + 0
mechanical energy before collision = 32.4 J
and
mechanical energy after collision = 1/2 (0.2)(15.90)² + 1/2 (0.2)(8.46)²
mechanical energy after collision = 32.433 J
Answer:
The value is
Explanation:
From the question we are told that
The length is 
The radius of the the solenoid is 
The number of turns per meter is 
The current through the solenoid is 
The current through the segment is 
Generally the magnetic force is mathematically represented as

At maximum 
So

Here B is the magnetic field is mathematically represented as

Here
is the permeability of free space with value

So

=> 
So

First calculate the time it would take for the crate to
fall using the formula:
h = v0 t + 0.5 g t^2
110 m = 0 + 0.5 (9.8 m/s^2) t^2
t = 4.74 s
The crate is also moving at 46 m/s on with respect to the
horizontal surface, therefore distance covered is:
d = (46 m/s) * 4.74 s
d = 217.95 m
The crate would fall 217.95 m from the tail of the car.
A sample of an ideal gas is heated, and its kelvin temperature doubles. The average speed of the molecules in the sample will increases by a factor of
The root-mean square (RMS) velocity is the value of the square root of the sum of the squares of the stacking velocity values divided by the number of values. The RMS velocity is that of a wave through sub-surface layers of different interval velocities along a specific ray path.
Root mean square speed is a statistical measurement of speed.
The root mean square speed can be calculated as : V1 : 
if temperature becomes double
let T1 is initial temperature
So , T2 = 2 * T1
now ,
Root mean square speed will be (V2) = 
=
* 
=
V1
Thus when temperature becomes double, the root mean square speed increases by a factor of
To learn more about root mean square velocity here
brainly.com/question/13751940
#SPJ4