Answer:
2 m = E / c^2 where m is mass of electron
E = h v where v is the frequency ( nu) of the incident photon
E = h c / y where y is the incident wavelength (lambda)
2 m = h / (c y)
y = h / (2 m c) wavelength required
y = 6.62 * 10E-34 / (2 * 9.1 * 10E-31 * 3 * 10E8) m
y = 3.31 / 27.3 E-11 m
y = 1.21 E -12 m = .0121 Angstrom units
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.
Answer:
D. shortest wavelength
Explanation:
Photons with the highest energy have the shortest wavelength. The shorter the wavelength, the higher the energy of a photon.
A photon is a quantity that transmits electromagnetic energy from one place to the other.
- Gamma rays have photons that transmits the highest amount of energy.
- The rays have the shortest wavelength and highest frequency of all electromagnetic radiations.
Energy, wavelength and frequency of a photon are connected using the expression:
E = h f =
E is the energy
h is the Planck's constant
f is the frequency.