Answer:
C. 10
Explanation:
So wr for protons is 2 and wr for alpha particles is 20. In these terms, alpha particles cause ten times more damage then protons.
Answer:
A general instrument, which is used to determine the concentration of hydrogen ion within the aqueous solution is known as a pH meter. The meter helps in determining the alkalinity or acidity, which is articulated in the form of pH. It is also called a potentiometric pH meter as it helps in finding the variation in electrical potential between a reference electrode and a pH electrode. This electrical potential variation is associated with the pH of the solution.
The potentiometric pH meter comprises a pair of electrodes and a basic electronic amplifier, some may even comprise a combination electrode and some sort of display that demonstrates pH units. The potentiometric pH meter generally exhibits a reference electrode or a combination electrode, and a glass electrode. The probes or electrodes are administered within a solution whose pH values are needed to be determined.
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
In a flame photometric analysis, salt solution is first vaporized using the heat of flame, followed by this electrons from valance shell gets excited from ground state to excited state. Followed by this de-excitation of electron bring backs electrons to ground state. This process is accompanied by emission of photon. The photon emitted is characteristic of an element, and number of photons emitted can be used for quantitative analysis.
<span>Following are the investigative question that you can answer by doing this experiment.
</span>1) What information can be obtained from the colour of flame?
2) <span>State the relationship between wavelength, frequency, and energy?
</span><span>3) Can you identify the metal present in unknown sample provided?
4) How will you identify amount of metal present in sample solution?
5) </span><span>Why do different chemicals emit light of different colour?</span><span>
</span>