Answer:
I think it might be a closed system
✅Show work regardless if student got answer correct or incorrect
q = mC∆T
q = (30.0g)(0.900J/goC)(50oC)
q = 1350 J
So, the right answer is 1350 J
IamSugarBee◽
Answer:
It's explained below.
Explanation:
An everyday situation is when we raise an object.
Now, when we raise an object, energy is transferred to the Earth object system and thus the gravitational field energy of the system will increase.
Now, this energy is usually released when the object falls. The mechanism of this release is known as gravitational force.
In the same manner, two magnetic and electrically charged objects that are interacting at a distance will exert forces on each other and this can lead to transfer of energy between the interacting objects.
Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.
Answer:

Explanation:
We are asked to find the volume of a solution given the moles of solute and molarity.
Molarity is a measure of concentration in moles per liter. It is calculated using the following formula:

We know there are 0.14 moles of potassium chloride (KCl), which is the solute. The molarity of the solution is 1.8 molar or 1.8 moles of potassium chloride per liter.
- moles of solute = 0.14 mol KCl
- molarity= 1.8 mol KCl/ L
- liters of solution=x
Substitute these values/variables into the formula.

We are solving for x, so we must isolate the variable. First, cross multiply. Multiply the first numerator and second denominator, then the first denominator and second numerator.



Now x is being multiplied by 1.8 moles of potassium chloride per liter. The inverse operation of multiplication is division, so we divide both sides by 1.8 mol KCl/L.


The units of moles of potassium chloride cancel.


The original measurements of moles and molarity have 2 significant figures, so our answer must have the same. For the number we found, that is the thousandth place. The 7 in the ten-thousandth place tells us to round the 7 up to a 8.

There are approximately <u>0.078 liters of solution.</u>