Answer:

Explanation:
Hello,
In this case, we use the ideal gas equation to compute the volume as shown below:

Nonetheless we are given mass, for that reason we must compute the moles of gaseous fluorine (molar mass: 38 g/mol) as shown below:

Thus, we compute the volume with the proper ideal gas constant, R:

Best regards.
The answer is 7.33 g.
<span>To calculate this, we will use the the ideal gas law:
PV = nRT
where
P - pressure of the gas,
V - volume of the gas,
n - amount of substance of gas,
R - gas constant,
T - temperature of the gas.</span>
Since the amount of substance of gas (n) can be expressed as mass (m) divided by molar mass (M), then:
PV = RTm/M
It is given:
P = 0.98 atm
V = 10.2 l
T = 26°C = 299.15 K
R = 0.082 l atm/Kmol (gas constant)
M (H2O) = 2Ar(H) + Ar(O) = 2*1 + 16 = 2 + 16 = 18g
m = ?
Since PV = RTm/M, then:
m = PVM/RT
m = 0.98 · 10.2 · 18 / 0.082 · 299.15 = 179.928/24.5303 = 7.33 g
Answer:
The answer to your question is: 69.6 %
Explanation:
Freon -112 (C₂Cl₄F₂)
MW = (12 x 2) + (35.5 x 4) + (19 x 2)
= 24 + 142 + 38
= 204 g
204 g of C₂Cl₄F₂ ----------------- 100%
142 g ----------------- x
x = (142 x 100 ) / 204
x = 69.6 %
Answer:
The correct answer is option c. transfer of electrons from Mg to O.
Explanation:
Hello!
Let's solve this!
When Magnesium (Mg) reacts with oxygen (O), magnesium oxide is formed.
This reaction is spontaneous and occurs with oxidation number +2 of magnesium and oxidation number -2 of oxygen. It is an ionic union, so magnesium transfers its electrons to oxygen.
We conclude that the correct answer is option c. transfer of electrons from Mg to O.