The approximate orbital period of this star is 13 years.
<h3>What is Kepler's third law?</h3>
The square of a planet's period of revolution around the sun in an elliptical orbit is directly proportional to the cube of its semi-major axis, states Kepler's law of periods.
T² ∝ a³
The time it takes for one rotation to complete depends on how closely the planet orbits the sun. With the use of the equations for Newton's theories of motion and gravitation, Kepler's third law assumes a more comprehensive shape:
P² = 4π² /[G(M₁+ M₂)] × a³
where M₁ and M₂ are the two circling objects' respective masses in solar masses.
Learn more about Kepler's third law here:
brainly.com/question/1608361
#SPJ1
Answer:
18m/s^2
Explanation:
Vf = Vi + at
t = distance/ average velocity
(120 + 0)/2 = 60 (average velocity)
400m/60m/s = 20/3 s
insert into first equation:
120 = 0 + a(20/3)
360 = 20a
18 = a
HOPE THIS HELPS!!!
Explanation:
Newton's second law shows that there is a direct relation ship between force and acceleration . the grater force that is applied on a object of given mass the more the accelerate. for example doubling the force in the object doubles it's acceleration.
Mechanical waves require a medium to travel, but electromagnetic waves do not.
The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively
To calculate the acceleration of the plane, we use the formula below.
<h3>Formula:</h3>
- a = F/m..................... Equation 1
Where:
- a = Acceleration of the plane
- F = Force applied to the plane
- m = mass of the plane.
From the question,
Given:
Substitute these values into equation 1
- a = 550000/7000
- a = 78.57 m/s²
To calculate the velocity, we use the formula below.
- v = u+at............. Equation 2
Where:
- v = Final velocity
- u = initial velocity
- a = acceleration
- t = time.
From the question,
Given:
- u = 0 m/s
- a = 78.57 m/s
- t = 2.0 seconds
Substitute these values into equation 2
Hence, The acceleration and velocity of the plane is 78.57 m/s² and 157.14 m/s respectively.
Learn more about acceleration here: brainly.com/question/460763