The distance covered by car is equal to (assuming it is moving by uniform motion) the product between the car's speed and the time of the car ride, 4 h:

where

is the car's speed

is the duration of the car ride
Similarly, the distance covered by train is equal to the product between the train's speed and the duration of the train ride, 7 h:

The total distance covered is S=255 km, which is the sum of the distances covered by car and train:

which becomes

(1)
we also know that the train speed is 5 km/h greater than the car's speed:

(2)
If we put (2) into (1), we find

and if we solve it, we find


So, the car speed is 20 km/h and the train speed is 25 km/h.
First, use a high-quality measurement tool. Next, measure carefully. Finally, repeat the measurement a few times. Hope it helps!
Answer:
In waves distance is measured by wave length and time is measured by frequency or period.
velocity ratio=wave length multiply by frequency.
HENCE, if the same wave travels for 2 econds its frequency will be 2Hz.
Explanation:
Answer:
225 N
Explanation:
"Below the horizontal" means he's pushing down at an angle.
Draw a free body diagram of the box. There are three forces: normal force N pushing up, weight force mg pulling down, and the applied force F at an angle θ.
Sum of forces in the y direction:
∑F = ma
N − mg − F sin θ = 0
N = F sin θ + mg
Plug in values:
N = (50 N) (sin 30°) + (20.0 kg) (10 m/s²)
N = 225 N