Answer:
Height of the rocket be one minute after liftoff is 40.1382 km.
Explanation:

v = velocity of rocket at time t
g = Acceleration due to gravity =
= Constant velocity relative to the rocket = 2,900m/s.
m = Initial mass of the rocket at liftoff = 29000 kg
r = Rate at which fuel is consumed = 170 kg/s
Velocity of the rocket after 1 minute of the liftoff =v
t = 1 minute = 60 seconds'
Substituting all the given values in in the given equation:


Height of the rocket = h



Height of the rocket be one minute after liftoff is 40.1382 km.
Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:

<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω