In the future, please post the full problem with all included instructions. After doing a quick internet search, I found your problem listed somewhere else. It mentions two parts (a) and (b)
Part (a) asked for the equation of the line in y = mx+b form
That would be y = -2x+9
This is because each time y goes down by 2, x goes up by 1. We have slope = rise/run = -2/1 = -2. This indicates that the height of the candle decreases by 2 inches per hour. The slope represents the rate of change.
The initial height of the candle is the y intercept b value. So we have m = -2 and b = 9 lead us from y = mx+b to y = -2x+9
----------------------------------------------------------------
Part (b) then asks you to graph the equation. Because this is a linear equation, it produces a straight line. We only need 2 points at minimum to graph any line. Let's plot (0,9) and (1,7) on the same xy grid. These two points are the first two rows of the table. Plot those two points and draw a straight line through them. The graph is below
Answer:
the inverse would be x-2
Step-by-step explanation:
Answer:
false?
Step-by-step explanation:
Answer:15 should be on the x and add all together with the 69
Step-by-step explanation:
The order of operations used throughout mathematics, science, technology and many computer programming languages is expressed here:[2]
<span>exponents and roots </span>
<span>multiplication and division </span>
<span>addition and subtraction </span>
<span>This means that if a mathematical expression is preceded by one operator and followed by another, the operator higher on the list should be applied first. The commutative and associative laws of addition and multiplication allow terms to be added in any order and factors to be multiplied in any order, but mixed operations must obey the standard order of operations. </span>
<span>It is helpful to treat division as multiplication by the reciprocal (multiplicative inverse) and subtraction as addition of the opposite (additive inverse). Thus 3/4 = 3 ÷ 4 = 3 • ¼; in other words the quotient of 3 and 4 equals the product of 3 and ¼. Also 3 − 4 = 3 + (−4); in other words the difference of 3 and 4 equals the sum of positive three and negative four. With this understanding, we can think of 1 − 3 + 7 as the sum of 1, negative 3, and 7, and add in any order: (1 − 3) + 7 = −2 + 7 = 5 and in reverse order (7 − 3) + 1 = 4 + 1 = 5. The important thing is to keep the negative sign with the 3. </span>
<span>The root symbol, √, requires a symbol of grouping around the radicand. The usual symbol of grouping is a bar (called vinculum) over the radicand. Other functions use parentheses around the input to avoid ambiguity. The parentheses are sometimes omitted if the input is a monomial. Thus, sin x = sin(x), but sin x + y = sin(x) + y, because x + y is not a monomial. Calculators usually require parentheses around all function inputs. </span>
<span>Stacked exponents are applied from the top down, i.e., from right to left. </span>
<span>Symbols of grouping can be used to override the usual order of operations. Grouped symbols can be treated as a single expression. Symbols of grouping can be removed using the associative and distributive laws, also they can be removed if the expression inside the symbol of grouping is sufficiently simplified so no ambiguity results from their removal. </span>