With the switch open, there's no current in the circuit, and therefore
no voltage drop across any of the dissipative elements (the resistor
or the battery's internal impedance). So the entire battery voltage
appears across the switch, and the voltmeter reads 12.0V .
Assuming that the can is motionless, we can then assume that the vertical component of T = mg and that Fe = the horizontal component of T.
<span> Since T itself is larger than it's vertical or horizontal components separately, then T is greater than all the forces.</span>
The answer is Codominance, AB blood cells inherit both A and B blood types so they are codominance
The electron is accelerated through a potential difference of

, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:

where
m is the electron mass
v is the final speed of the electron
e is the electron charge

is the potential difference
Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:

Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:

where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
Answer:
The beam of light is moving at the peed of:
km/min
Given:
Distance from the isalnd, d = 3 km
No. of revolutions per minute, n = 4
Solution:
Angular velocity,
(1)
Now, in the right angle in the given fig.:

Now, differentiating both the sides w.r.t t:

Applying chain rule:


Now, using
and y = 1 in the above eqn, we get:

Also, using eqn (1),

