I believe Box B will have a greater gravitational pull because the gravitational pull of an object depends on its mass. The more mass an object has, the greater its gravitational pull will become.
For example, we can take planets. Naturally, they are round because once upon a time there was a larger piece of rock that attracted others. But the size of the rock won't matter, it's the weight that matters. If the rock weighed nothing, the other rocks would just rebound upon contact. But if the rock weighed a lot, then things wouldn't so easily rebound and might actually stick to it.
Answer:
• 36.4 kg of coal.
• 80 pounds of coal.
Explanation:
Using proportionality constant,
Mass of coal = 1,000,000/27,500,000 btus/metric ton
= 0.0364 metric tons of coal
Mass of coal = 1,000,000/25,000,000 btus/ton
= 0.04 tons of coal.
Converting metric tons to kilogram,
1 metric ton = 1000kg,
0.0364 metric ton;
= 36.4 kg of coal.
Converting tons to pounds,
1 ton = 2000 pounds,
0.04 metric ton;
= 80 pounds of coal.
Answer:
1807
Explanation:
Robert Fulton (1765–1815) was an American engineer and inventor who is widely known for developing a commercially successful steamboat called Clermont. In 1807, that steamboat took passengers from New York City to Albany and back again, a round trip of 300 miles, in 62 hours.