Hi!
The correct options would be:
1. Cathode - <em>reduction</em>
The cathode is the negatively charged electrode, and so has an excess of electrons. Cations (positively charged ions) are attracted to the cathode, and gain electrons to acquire a neutral charge. The process in which a gain of electron occurs is called reduction.
2. Anode - <em>oxidation</em>
The opposite occurs at the anode which is positively charged and attracts negatively charged ions, anions. These anions lose their electrons at the anode to acquire a neutral charge, and the process involving loss of electrons is known as oxidation.
3. Salt Bridge - <em>ion transport </em>
Salt bridge is a physical connection between the the anodic and cathodic half cells in an electrochemical cell and is a pathway that facilitates the flow of ions back and forth these half cells. Salt bridge is involved in maintaining a neutral condition in the electrochemical cells, and its absence would result in the accumulation of positive charge in the anodic cell, and negative charge in the cathodic cell.
4. Wire - <em>electron transport </em>
Wires have a universal role of being a pathway for the transport of electrons in circuit. This role is also the same in the wires involved in an electrochemical cells where they are used to transport electrons from the anodic half cell, and this electron transport results in the generation of electricity in the internal circuit of the electrochemical cell.
Hope this helps!
Answer:
The correct option is;
d 4400
Explanation:
The given parameters are;
The mass of the ice = 55 g
The Heat of Fusion = 80 cal/g
The Heat of Vaporization = 540 cal/g
The specific heat capacity of water = 1 cal/g
The heat required to melt a given mass of ice = The Heat of Fusion × The mass of the ice
The heat required to melt the 55 g mass of ice = 540 cal/g × 55 g = 29700 cal
The heat required to raise the temperature of a given mass ice (water) = The mass of the ice (water) × The specific heat capacity of the ice (water) × The temperature change
The heat required to raise the temperature of the ice from 0°C to 100°C = 55 × 1 × (100 - 0) = 5,500 cal
The heat required to vaporize a given mass of ice = The Heat of Vaporization × The mass of the ice
The heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal
The total heat required to boil 55 g of ice = 29700 cal + 5,500 cal + 4,400 cal = 39,600 cal
However, we note that the heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal.
The heat required to vaporize the 55 g mass of ice at 100°C = 4,400 cal
Answer:
1(a) N = 3
(b) N = 0
(c) N = 5
(d) N = -2
(2) Molecular formula for benzene is C6H6
Explanation:
1(a) N02 1-
N + (2×-2) = -1
N-4 = -1
N = -1+4 = 3
(b) N2
2(N) = 0
N = 0/2 = 0
(c) NO2Cl
N + ( 2×-2) + (-1) = 0
N - 4 - 1 = 0
N - 5 = 0
N = 0+5 = 5
(d) N2H4
2(N) + (4×1) = 0
2N + 4 = 0
2N = 0 - 4 = -4
N = -4/2 = -2
(2) Molcular mass of benzene = 78g/mole = (6×12g of carbon) + (6×1g of hydrogen) = 72+6 = 78g/mole
Therefore, molecular formula for benzene is C6H6
Answer:
Updrafts characterize a storm's early development, during which warm air rises to the level where condensation begins and precipitation starts to develop. In a mature storm, updrafts are present alongside downdrafts caused by cooling and by falling precipitation.
Hope it helps
Have a great Day : P
Answer:
A mutation is a heritable change in the genetic material of an individual. The change can be large or small. Large changes involve the loss, addition, duplication, or rearrangement of whole chromosomes or chromosome segments. Mutations can affect an organism by changing its physical characteristics (or phenotype) or it can impact the way DNA codes the genetic information (genotype). When mutations occur they can cause termination (death) of an organism or they can be partially lethal.
Explanation: