Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
Given :
Some compounds :
.
To Find :
Which of the following compounds has the most deshielded protons .
Solution :
Deshielded means nucleus whose chemical shift has been increased due to removal of electron density, magnetic induction, or other effects .
In simple words deshielding means the ability to shift protons .
Now , among Cl , I , Br and H . Cl is the most electron negative .
Therefore , deshielding will be more in
.
Hence , this is the required solution .
It is called a watt and or wattage