Answer:
The two methods will yield different results as one is subject to experimental errors that us the Archimedes method of measurement, the the density measurement method will be more accurate
Explanation:
This is because the density method using the calculated volume will huve room for less errors that's occur in practical method i.e Archimedes method due to human error
Answer:
Momentum is given by
p
=
m
v
. Impulse is the change of momentum,
I
=
Δ
p
and is also equal to force times time:
I
=
F
t
. Rearranging,
F
=
I
t
=
Δ
p
t
=
0
−
20
,
000
5
=
−
4000
N
.
Explanation:
Momentum before the collision is
p
=
m
v
=
2000
⋅
10
=
20
,
000
k
g
m
s
−
1
.
Assuming the truck comes to a complete halt, the momentum after the collision is
0
k
g
m
s
−
1
.
The change in momentum,
Δ
p
, is initial minus final
→
0
−
20
,
000
=
−
20
,
000
This is called the impulse:
I
=
Δ
p
. Impulse is also equal (check the units) to force times time:
I
=
F
t
.
We can rearrange this expression to make
F
the subject:
F
=
I
t
=
Δ
p
t
=
−
20
,
000
5
=
−
4000
N
The negative sign just means the force acting is in the opposite direction to the initial momentum.
(This will be the average force acting during the collision: collisions are chaotic so the force is unlikely to be constant.)
they absorb sunlight and turn it into glucose I think.
Answer:
10.6 mA
Explanation:
t = time interval = 1.00 s
q = magnitude of charge on each ion = 1.6 x 10⁻¹⁹ C
n₁ = number of Na⁺ ions = 2.68 x 10¹⁶
q₁ = charge due to Na⁺ ions = n₁ q = (2.68 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.004288 C
n₂ = number of Cl⁻ ions = 3.92 x 10¹⁶
q₂ = charge due to Cl⁻ ions = n₂ q = (3.92 x 10¹⁶) (1.6 x 10⁻¹⁹) = 0.006272 C
i₁ = Current due to Na⁺ ions =
=
= 0.004288 A
i₂ = Current due to Cl⁻ ions =
=
= 0.006272 A
Current passing between the electrodes is given as
i = i₁ + i₂
i = 0.004288 + 0.006272
i = 0.01056 A
i = 10.6 x 10⁻³ A
i = 10.6 mA