Answer:

Explanation:
P = Pressure = 
V = Volume = 1 cm³
n = Amount of substance
N = Number of atoms
= Avogadro's constant = 
R = Gas constant = 8.314 J/k mol
T = Temperature = 273.15+20 = 293.15 K
From the ideal gas law



The number of atoms is 
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
Answer:
1.24 x 10 to the 5 ev = 124,000 ev its B
Explanation:
E = hc/lambda = 1.24 ev-micrometer/1.0x10 to the -5 micrometers = 1.24 x 10 to the 5 ev = 124,000 ev
h = Planck's constant = 6.626 × 10 to the -34 joule·s
c = speed of light = 2.998 × 10 to the 8 m/s
lambda is the given wavelength
E is the desired photon energy
A = Delta v/Delta t
Delta v = 25 - 0 = 25
Delta t = 30
25/30 = 5/6 = 1.66 repeating