Answer:
d) 289.31 m
Explanation:
Energy provided by potential energy = mgh = m x 9.8x 200 sin10.5 = 357.18m
Energy used by friction = μmgcos 10.5 x 200 = .075 x m x 9.8 x cos 10.5 x200 = 144.54 m .
Energy used by friction on plain surface = μmg x d.( dis distance covered on plain ) =.075x m x 9.8 xd = .735 m d
To equate
357.18 m -144.54 m = .735 m d
d = 289.31 m .
Answer:
The answer is I=70,513kgm^2
Explanation:
Here we will use the rotational mechanics equation T=Ia, where T is the Torque, I is the Moment of Inertia and a is the angular acceleration.
When we speak about Torque it´s basically a Tangencial Force applied over a cylindrical or circular edge. It causes a rotation. In this case, we will have that T=Ft*r, where Ft is the Tangencial Forge and r is the radius
Now we will find the Moment of Inertia this way:
->
Replacing we get that I is:
Then
In case you need to find extra information, keep in mind the Moment of Inertia for a solid cylindrical wheel is:
Answer:
25 meters
Explanation:
1 sec is 2.5, 1x10 so 2.5x10=25
Answer:
D) momentum of cannon + momentum of projectile= 0
Explanation:
The law of conservation of momentum states that the total momentum of an isolated system is constant.
In this case, the system cannon+projectile can be considered as isolated, because no external forces act on it (in fact, the surface is frictionless, so there is no friction acting on the cannon). Therefore, the total momentum of the two objects (cannon+projectile) must be equal before and after the firing:

But the initial momentum is zero, because at the beginning both the cannon and the projectile are at rest:

So the final momentum, which is sum of the momentum of the cannon and of the projectile, must also be zero:
