Answer:
I think so
Explanation:
There are atone in every particle so the more particles, the more atoms
Answer:
C.
Explanation:
A gas can expand to fill any volume and takes the shape of the container.
Answer:
Explanation:
Since, the atomic mass of the elements is a characteristic property of the elements, you can use the data given, number of moles and mass in grams of the product, to calculate the atomic mass of the product, and then compare with the atomic masses of the elements (information foun in any periodic table).
<u>1) Atomic mass of the product</u>:
- Atomic mass = mass in grams / number of moles
- Atomic mass = 604.4 g / 6.3 mol = 95.94 g/mol ≈ 94.9 g/mol (rounded to three significant figures)
<u>2) Periodic table:</u>
- Molybdenum, Mo, the element with atomic number 42, has atomic mass equal to 95.94 g/mol.
<u>3) Conclusion</u>:
So, you can conclude safely that the element you have produced is Molybdenum.
The concentration of the hydronium ion in hydrochloric acid is 0.0045 M, and the pH of the solution is 2.34.
<h3>What is pH?</h3>
pH is the potential of the hydrogen or the hydronium ions in the aqueous solution.
As the solution contains
HCl the concentration of the hydronium ion will be the same, 
The pH of the solution is calculated as:
![\begin{aligned} \rm pH &= \rm -log[H^{+}]\\\\&= - \rm log (4.5 \times 10^{-3})\\\\&= 2.34\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Crm%20pH%20%26%3D%20%5Crm%20-log%5BH%5E%7B%2B%7D%5D%5C%5C%5C%5C%26%3D%20-%20%5Crm%20log%20%284.5%20%5Ctimes%2010%5E%7B-3%7D%29%5C%5C%5C%5C%26%3D%202.34%5Cend%7Baligned%7D)
The concentration of the hydroxide ion is calculated from pH and hydronium ion as:
![\begin{aligned} \rm [H_{3}O^{+}][OH^{-}] &= 10^{-14}\\\\&= \dfrac{1 \times 10^{-14}}{4.5 \times 10^{-3}}\\\\&= 2.2 \times 10^{12}\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Crm%20%5BH_%7B3%7DO%5E%7B%2B%7D%5D%5BOH%5E%7B-%7D%5D%20%26%3D%2010%5E%7B-14%7D%5C%5C%5C%5C%26%3D%20%5Cdfrac%7B1%20%5Ctimes%2010%5E%7B-14%7D%7D%7B4.5%20%5Ctimes%2010%5E%7B-3%7D%7D%5C%5C%5C%5C%26%3D%202.2%20%5Ctimes%2010%5E%7B12%7D%5Cend%7Baligned%7D)
Now, for the calcium hydroxide solution, the calculations are shown as,

pOH is calculated as:
![\begin{aligned} \rm pOH &= 14- 8 = 6\\\\\rm [OH^{-}] &= \rm antilog (-6)\\\\&= 10^{-6} \end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%5Crm%20pOH%20%26%3D%2014-%208%20%3D%206%5C%5C%5C%5C%5Crm%20%5BOH%5E%7B-%7D%5D%20%26%3D%20%20%5Crm%20antilog%20%28-6%29%5C%5C%5C%5C%26%3D%2010%5E%7B-6%7D%20%5Cend%7Baligned%7D)
The concentration of calcium hydroxide is calculated as:
![\begin{aligned} &= \dfrac{1}{2} \times \rm [OH^{-}]\\\\&= 5 \times 10^{-4} \;\rm M\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%20%26%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5Crm%20%5BOH%5E%7B-%7D%5D%5C%5C%5C%5C%26%3D%205%20%5Ctimes%2010%5E%7B-4%7D%20%5C%3B%5Crm%20M%5Cend%7Baligned%7D)
Therefore, the pH and the pOH give the concentration of the hydrogen or the hydronium ion and the hydroxide ion.
Learn more about pH and pOH here:
brainly.com/question/16062632
#SPJ1