Answer:
can you send the work off of here? what is the lab over?
That specific kind is called gas.
When you put water in a freezing temprature it becomes solid.
When you boil water it becomes gas
Although the models are not provided, I was able to find them and the beakers with solid present in them are:
1C
2A
2C
3A
3C
This is determined by the fact that the beakers all have a piece of closely packed substance laying at the bottom. This closely packed lattice is characteristic of solid substances, and the fact that they exist in the solution in the solid states indicates that they are insoluble.
Answer is: the percent composition of Hg in the compound is 71.5%.
Balanced chemical reaction: Hg + Br₂ → HgBr₂.
m(Hg) = 60.2 g; mass of the mercury.
m(Br₂) = 24.0; mass of the bromine.
m(HgBr₂) = m(Hg) + m(Br₂).
m(HgBr₂) = 60.2 g + 24 g.
m(HgBr₂) = 84.2 g; mass of the compound.
ω(Hg) = m(Hg) ÷ m(HgBr₂) · 100%.
ω(Hg) = 60.2 g ÷ 84.2 g · 100%.
ω(Hg) = 71.5%.
Answer:
116 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of calcium = 2.9 moles
Mass of calcium =.?
The mole and mass of a substance are related according to the following formula:
Mole = mass / molar mass
With the above formula, we can obtain the mass of calcium. This can be obtained as follow:
Number of mole of calcium = 2.9 moles
Molar mass of calcium = 40 g/mol
Mass of calcium =.?
Mole = mass / molar mass
2.9 = mass of calcium / 40
Cross multiply
Mass of calcium = 2.9 × 40
Mass of calcium = 116 g
Therefore, the mass of 2.9 moles of calcium is 116 g.