T = 20 % : 20 / 100 = 0.2
m1 = solute
m2 = Solvent
T = m1 / m1 + m2
0.2 = 500 g / 500 g + m2
0.2 * ( 500 + m2 ) = 500
0.2 * 500 + 0.2 m2 = 500
100 + 0.2 m2 = 500
0.2 m2 = 500 - 100
0.2 m2 = 400
m2 = 400 / 0.2
m2 = 2000 g of water
hope this helps!
Answer:
The answer is its equal to the volume of its container.
--------------------------------------------------------------------------------
I hope this helps! :)
Answer: b) Less dense
Explanation:
Differences in density is one reason objects float or sink.
An object more dense than the fluid in which it is immersed will sink, while objects less dense than the fluid in which it is immersed will float to the surface.
But objects floats at constant level if the density is equal to the density of the fluid in which it is immersed; it neither rises nor sinks in the fluid in this case.
Answer: The correct option is The properties of a noble gas.
Explanation: There are 7 periods in the periodic table.
The last element of each period are Helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), Radon (Rn) and Ununoctium (Uuo).
- The electronic configuration for Helium is
. For He, The outermost electrons are 2.
- The electronic configuration for all the other elements is
( where, n = 2, 3, 4, 5, 6 and 7 respectively). For all the other gases, the outermost electrons are 8.
All these elements have stable electronic configuration and are not reactive in nature. Hence, they are considered as noble gases.
Therefore, the last element of each period always have the properties of a noble gas.
The correct answer for the question that is being presented above is this one: "<span>16.728 g."</span>
Given that
ΔHsolid = -5.66 kJ/mol.
This means that 5.66 kJ of heat is released when 1 mole of NH3 solidifies
When 5.57 kJ of heat is released
amount of NH3 solidifies = 5.57/5.66 = 0.984 moles
<span>molar mass of NH3 = 17 g/mole </span>
<span>1 mole of NH3 = 17 g </span>
So, 0.984 moles of NH3 = 17 X 0.984 = 16.728 g