Answer:
d.All of the above are correct.
Explanation:
The curve of demand moves left or right continuously. Income, patterns and preferences, related products prices as well as the population size and composition are the key factors causing demand change.
Answer:
The concentration of H⁺ ions is 0.0165 M.
Explanation:
Let's consider the dissociation of H₂SO₄. In the first step, H₂SO₄ acts as a strong acid, completely dissociating into HSO₄⁻ and H⁺. Therefore, the concentrations of these ions will be the <em>same</em> that the initial concentration of the acid.
H₂SO₄ ⇒ HSO₄⁻ + H⁺
Initial 0.010M 0 0
Final 0 0.010M 0.010M
Now, HSO₄⁻ is a weak acid that will dissociate partially to form H⁺ and SO₄²⁻.
HSO₄⁻ ⇄ H⁺ + SO₄²⁻
To find out the concentration of H⁺ from HSO₄⁻ we will use an ICE Chart. We recognize 3 stages: Initial, Change and Equilibrium, and complete each row with the concentration or change in concentration.
HSO₄⁻ ⇄ H⁺ + SO₄²⁻
I 0.010 0 0
C -x +x +x
E 0.010 -x x x
![Ka2=0.012=\frac{[H^{+}].[SO_{4}^{2} ]}{H_{2}SO_{4}} =\frac{x^{2} }{0.010-x}](https://tex.z-dn.net/?f=Ka2%3D0.012%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D.%5BSO_%7B4%7D%5E%7B2%7D%20%5D%7D%7BH_%7B2%7DSO_%7B4%7D%7D%20%3D%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B0.010-x%7D)
This quadratic equation has 2 solutions: x₁ = -0.018 and x₂ = 0.00649. Since concentrations cannot be negative, we choose x₂. Then, [H⁺] coming from HSO₄⁻ is 0.00649 M.
The total concentration of H⁺ is:
[H⁺] = 0.010 M + 0.00649 M = 0.0165 M
Answer:
A metal M readily forms water-soluble sulphate MSO4, water-insoluble hydroxide M(OH)2 and oxide MO. The oxide and hydroxide are soluble in NaOH. The M is: