Answer:
4
Step-by-step explanation:
The mean of a set of data: <em>(n₁ + n₂ + n₃...)/n</em>, where n₁,₂,₃... are numbers in the set, and n is the number of numbers.
Plug in: (1 + 5 + 5 + 7 + 3 + 3 + 4)/7
Add: 28/7
Divide: 4
Answer: 5
Work Shown:
f(x) = 2x+1
f(2) = 2*2+1 ... x has been replaced with 2
f(2) = 4+1
f(2) = 5
The input is x = 2. The output is y = 5.
Answer with explanation:
Number of four digit numbers using four distinct digit
=Unit placed can be filled in four ways * Tens place can be filled in Three ways * Hundreds place can be filled in 2 ways * Thousand Place can be filled in a single way
=4*3*2*1
=24 distinct numbers
Sum of all four , four digits numbers using 1,2,3,4
= (If we keep 4 at unit place +Keeping 3 at unit place +Keeping 2 at unit place+Keeping 1 at unit place)×6+At tens place (2*2+3*2+1*2+4*2+2*2+1*2+1*2+3*2+4*2+2*2+3*2+4*2)+At hundred's place (2*2+3*2+1*2+4*2+2*2+1*2+1*2+3*2+4*2+2*2+3*2+4*2)+At thousand's Place(2*2+3*2+1*2+4*2+2*2+1*2+1*2+3*2+4*2+2*2+3*2+4*2)
=(24+18+12+6)Unit place+(60)Ten's place +(60)Hundred's place+(60)Thousand's Place
=66660
Answer:
9) 28
10) 22
Step-by-step explanation:
collinear means on the same line
9 ) AB+BC=AC
16+12=28
10) 13+9=22
Usando la distribución binomial, hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
<h3>¿Qué es la distribución binomial?</h3>


Los parámetros son:
- n es el número de ensayos.
- p es la probabilidad de éxito en un ensayo
En este problema, hay que:
- 20% de los empleados de la población civil que está en una base militar restringida porta su identificación personal, o sea p = 0.2.
- Llegan 10 empleados, o sea, n = 10.
La probabilidad de que el guardia de seguridad encuentre al menos uno en la base militar restringida es dada por:

En que:


Por eso:

Hay una probabilidad de 0.8926 = 89.26% de que el guardia de seguridad encuentre al menos uno en la base militar restringida.
Puede-se aprender más a cerca de la distribución binomial en brainly.com/question/25132113