The answer is 10-12. The relationship of pH and [H+] is pH = -lg[H+]. And the higher pH, the stronger base is. So the strongest base has the lowest concentration of H+.
Answer:
0.071 moles of Na₃PO₄ .
Explanation:
Given data:
Number of molecules of Na₃PO₄ = 4.3× 10²² molecules
Number of moles = ?
Solution:
1 mole contain 6.022 × 10²³ molecules
4.3× 10²² molecules × 1 mol / 6.022 × 10²³ molecules
0.71× 10⁻¹ mol
0.071 mol
The number 6.022 × 10²³ is called Avogadro number.
"It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance"
Answer:
17.65 grams of O2 are needed for a complete reaction.
Explanation:
You know the reaction:
4 NH₃ + 5 O₂ --------> 4 NO + 6 H₂O
First you must know the mass that reacts by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction). For that you must first know the reacting mass of each compound. You know the values of the atomic mass of each element that form the compounds:
- N: 14 g/mol
- H: 1 g/mol
- O: 16 g/mol
So, the molar mass of the compounds in the reaction is:
- NH₃: 14 g/mol + 3*1 g/mol= 17 g/mol
- O₂: 2*16 g/mol= 32 g/mol
- NO: 14 g/mol + 16 g/mol= 30 g/mol
- H₂O: 2*1 g/mol + 16 g/mol= 18 g/mol
By stoichiometry, they react and occur in moles:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then in mass, by stoichiomatry they react and occur:
- NH₃: 4 moles*17 g/mol= 68 g
- O₂: 5 moles*32 g/mol= 160 g
- NO: 4 moles*30 g/mol= 120 g
- H₂O: 6 moles*18 g/mol= 108 g
Now to calculate the necessary mass of O₂ for a complete reaction, the rule of three is applied as follows: if by stoichiometry 68 g of NH₃ react with 160 g of O₂, 7.5 g of NH₃ with how many grams of O₂ will it react?

mass of O₂≅17.65 g
<u><em>17.65 grams of O2 are needed for a complete reaction.</em></u>
Answer:
Like stratovolcanoes, they can produce violent, explosive eruptions, but their lava generally does not flow far from the originating vent. Cryptodomes The 1980 eruption of Mount St. Helens was an example; lava beneath the surface of the mountain created an upward bulge which slid down the north side of the mountain.
Explanation: