The volume of a gas is the same as its CONTAINER.
Gases generally has no shape and no definite volume. When a gas is placed in a container, the gas usually takes the shape and the volume of the container, that is, the gas fills up all the available spaces in the container. Thus, the volume of a gas will always be the same as its container. This is in contrast with solids, which have definite shape and volume and liquids, which have definite volume but no fixed shape.
Answer:
0.9
Explanation:
The pka represents the force by which the molecules need to dissociate for the acids ,
Hence , lower the pka stronger will be the acid and that therefore will dissociate completely and vice versa , for a weak acid higher the pka .
And in case of a base , it will be completely reversed , lower pKa , weaker base ,
and higher pKa , stronger base .
From the data of the question ,
0.9 is the lowest value of the pKa , hence , weakest base .
Answer:
Double replacement reaction
Explanation:
Now, let us first write the reaction equation properly:
H₂SO₄ + 2KOH ⇒ K₂SO₄ + 2H₂O
The above reaction is a neutralization reaction between an acid and a base whose product gives salt and water only at most instances.
From here, we can observe that the species displaces on another in their ionic state. Hydrogen replaces potassium and water is produced. Potassium combines chemically with sulfate ions to give the salt of potassium.
So we look equation for the free Gibbs free energy (ΔG) which depends on entalpy (ΔH), temperature (T) and entropy (ΔS):
ΔG = ΔH - TΔS
ΔG is negative (-) because the water absorption on the silica gel surface is a spontaneous process.
ΔH is negative (-) because the water absorption on the silica gel surface is a exothermic process (it releases heat and if you want to desorb the water form the silica gen you need to add heat which is a endothermic process).
ΔS is negative (-) because the water is adsorbed, so from disorderly state you take the water molecules and put them in a orderly state and by doing that you decrease the entropy.