T<span>his is a straightforward question related to the surface energy of the droplet. </span>
<span>You know the surface area of a sphere is 4π r² and its volume is (4/3) π r³. </span>
<span>With a diameter of 1.4 mm you have an original droplet with a radius of 0.7 mm so the surface area is roughly 6.16 mm² (0.00000616 m²) and the volume is roughly 1.438 mm³. </span>
<span>The total surface energy of the original droplet is 0.00000616 * 72 ~ 0.00044 mJ </span>
<span>The five smaller droplets need to have the same volume as the original. Therefore </span>
<span>5 V = 1.438 mm³ so the volume of one of the smaller spheres is 1.438/5 = 0.287 mm³. </span>
<span>Since this smaller volume still has the volume (4/3) π r³ then r = cube_root(0.287/(4/3) π) = cube_root(4.39) = 0.4 mm. </span>
<span>Each of the smaller droplets has a surface area of 4π r² = 2 mm² or 0.0000002 m². </span>
<span>The surface energy of the 5 smaller droplets is then 5 * 0.000002 * 72.0 = 0.00072 mJ </span>
<span>From this radius the surface energy of all smaller droplets is 0.00072 and the difference in energy is 0.00072- 0.00044 mJ = 0.00028 mJ. </span>
<span>Therefore you need roughly 0.00028 mJ or 0.28 µJ of energy to change a spherical droplet of water of diameter 1.4 mm into 5 identical smaller droplets. </span>
Answer:
Here's what I get
Explanation:
A plant extract is a mixture because it contains different substances: acetone or ethanol, chlorophylls A and B, carotene and xanthophylls.
It is homogeneous because it is a solution. There is only one phase: the liquid phase. You cannot see the pigments as separate phases.
You can separate the pigments by paper, thin layer, or column chromatography.
Many schools use paper chromatography, because paper is cheap.
As the mixture of pigments follows the solvent up the paper, they separate into different coloured bands according to their attractive forces to the cellulose in the paper.
The chlorophylls are strongly attracted to the paper, so they don't travel very far.
The nonpolar carotene molecules have little attraction to the polar cellulose, so they are carried along by the solvent front.
Answer:
some bonds are broken and new ones are formed. Now you are ready to learn more about those bonds. Chemical bonds are attractions between atoms. They are simply attractive forces (between the + nucleus of one atom and the - electrons of a neighboring atom) that hold groups of atoms together and make them function as a unit.
Answer:
11
Explanation:
The atomic number = number of protons. The mass number (23) = sum of number of neutrons and protons. Since you know the mass number is 23 and it has 12 neutrons, 23-12 gives you 11 protons, so its atomic number is 11.
If you want additional help in chemistry or another subject for FREE, check out growthinyouth.org
Answer:
The answer is "Verification of results
".
Explanation:
The scientific system consisted inside an iterative or cyclical process which experimental results and technically confirm a theory. There are four things which scientific design aims people explain:
- Subject of investigation characterization.
- Hypothesis from its consequences of its characterization.
- Forecasts.
- Experimentation which show the precision and consistency of the hypothesis.
Its first stage of analysis involves collecting the samples taken for the current context, that are the focus of discussion, and then testing the samples taken to determine the absorbance of soft and hard salts throughout the water. It is required for water quality to be determined. Therefore, the collection and testing of samples falls under the scientific design category of classification, whereby Shamekha tried to verify the findings.