Potassium hydroxide is a strong base and hydrobromic acid is a strong acid. This implies that the pH of the end-point [neutralization] of their titration will be around pH 7. A good indicator for this kind of pH is bromthymol blue. This is because this indicator changes its colour at pH 7.
Answer:
poop
Explanation:
poopy sorry needed points.
A substance either an ion or a molecule that can act either an acid or a base depending on a medium is called Amphoteric. Some metals like zinc, tin, copper and aluminium which produce either metal oxides or hydroxides are examples of amphoteric. During the Amphoterism, the metal compound acts either an acid or a base depending on their oxidation state.
Answer:
Group 4A (or IVA) of the periodic table includes the nonmetal carbon (C), the metalloids silicon (Si) and germanium (Ge), the metals tin (Sn) and lead (Pb), and the yet-unnamed artificially-produced element ununquadium (Uuq).
The Group 4A elements have four valence electrons in their highest-energy orbitals (ns2np2). Carbon and silicon can form ionic compounds by gaining four electrons, forming the carbide anion (C4-) and silicide anion (Si4-), but they more frequently form compounds through covalent bonding. Tin and lead can lose either their outermost p electrons to form 2+ charges (Sn2+, the stannous ion, and Pb2+, the plumbous ion) or their outermost s and p electrons to form 4+ charges (Sn4+, the stannic ion, and Pb4+, the plumbic ion).
Carbon (C, Z=6).
Carbon is most familiar as a black solid is graphite, coal, and charcoal, or as the hard, crystalline diamond form. The name is derived from the Latin word for charcoal, carbo. It is found in the Earth's crust at a concentration of 480 ppm, making it the 15th most abundant element. It is found in form of calcium carbonate, CaCO3, in minerals such as limestone, marble, and dolomite (a mixture of calcium and
Explanation:
<em><u>T</u></em><em><u>H</u></em><em><u>I</u></em><em><u>S</u></em><em><u> </u></em><em><u>A</u></em><em><u>L</u></em><em><u>L</u></em><em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>K</u></em><em><u>N</u></em><em><u>O</u></em><em><u>W</u></em>
<u>E</u><u>N</u><u>J</u><u>O</u><u>Y</u><u> </u><u>THE</u><em><u> </u></em><em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em>
Answer:
The concentration of chloride ion is
Explanation:
We know that 1 ppm is equal to 1 mg/L.
So, the content 100 ppm suggests the presence of 100 mg of in 1 L of solution.
The molar mass of is equal to the molar mass of Cl atom as the mass of the excess electron in is negligible as compared to the mass of Cl atom.
So, the molar mass of is 35.453 g/mol.
Number of moles = (Mass)/(Molar mass)
Hence, the number of moles (N) of present in 100 mg (0.100 g) of is calculated as shown below:
So, there is of present in 1 L of solution.