<h2><u>Projectile</u><u> </u><u>motion</u><u>:</u></h2>
<em>If</em><em> </em><em>an</em><em> </em><em>object is given an initial velocity</em><em> </em><em>in any direction and then allowed</em><em> </em><em>to travel freely under gravity</em><em>, </em><em>it</em><em> </em><em>is</em><em> </em><em>called a projectile motion</em><em>. </em>
It is basically 3 types.
- horizontally projectile motion
- oblique projectile motion
- included plane projectile motion
To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
Answer:
Force, 
Explanation:
Given that,
Mass of the bullet, m = 4.79 g = 0.00479 kg
Initial speed of the bullet, u = 642.3 m/s
Distance, d = 4.35 cm = 0.0435 m
To find,
The magnitude of force required to stop the bullet.
Solution,
The work energy theorem states that the work done is equal to the change in its kinetic energy. Its expression is given by :

Finally, it stops, v = 0



F = -22713.92 N

So, the magnitude of the force that stops the bullet is 
Water sheds i hope this helps give me a brainiest answer