Sorry, but where are the ‘items’?
Answer:

The temperature for ![\Delta G^o=0[/tex is [tex]T=328.6 K](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D0%5B%2Ftex%20is%20%5Btex%5DT%3D328.6%20K)
Explanation:
The three thermodinamic properties (enthalpy, entropy and Gibbs's energy) are linked in the following formula:

Where:
is Gibbs's energy in kJ
is the enthalpy in kJ
is the entropy in kJ/K
is the temperature in K
Solving:


For
:





Hydrogen gas(H2) has a molar mass of 2 g. Molar mass of a substance is defined as the mass of 1 mole of that substance. And by 1 mole it is meant a collection of 6.022*10^23 particles of that substance.
So number of moles of H2 are 0.5 in this case. And thus it means there are (6.022*10^23)*0.5 particles( here they are molecules) in 1g of H2.
Tt is the genotype that will appear in boxes two and three.
If you look at the column and row that intersect to form boxes two and three, you will see that they are T and t. That is the best way I can describe it, sorry if it’s confusing.