Answer:
18,1 mL of a 0,304M HCl solution.
Explanation:
The neutralization reaction of Ba(OH)₂ with HCl is:
2 HCl + Ba(OH)₂ → BaCl₂ + 2 H₂O
The moles of 17,1 mL≡0,0171L of a 0,161M Ba(OH)₂ solution are:
= 2,7531x10⁻³moles of Ba(OH)₂
By the neutralization reaction you can see that 2 moles of HCl reacts with 1 mole of Ba(OH)₂. For a complete reaction of 2,7531x10⁻³moles of Ba(OH)₂ you need:
= 5,5062x10⁻³moles of HCl.
The volume of a 0,304M HCl solution for a complete neutralization is:
= 0,0181L≡18,1mL
I hope it helps!
Answer:
Solute concentration will afect the rate of a chemical reaction, because you must work with molarity
Explanation:
I think that solute mass may be it can affect the rate of reaction, if you have more mass in a solute, you will also have more moles.
If you want to know more, you have to consider temperature in the reaction and the presence of catalysts. They all, affect reactions.
First, we convert the given amount of energy into joules.
1 kJ = 1000 joules
2.2125 kJ = 2,212.5 Joules
Each kilocalorie contains 4,184 Joules
Kilocalories = 2,212.5 / 4,182
Kilocalories = 0.529
1 kilocalorie = 1000 calories
0.529 kilocalories = 529 calories
Answer:
C. Different heights of holes in the container
Explanation:
The independent variable is the variable that changes. So the independent variable is C because the heights of the holes change.