Atoms of sulfur = 9.60⋅g32.06⋅g⋅mol−1×6.022×1023⋅mol−1 . Because the units all cancel out, the answer is clearly a number, ≅2×1023 as required.
Answer:
6 is the right answer I know cause I like science
Characteristics of a medium wave. They are <span>Wavelengths in this band are long enough that radio waves are not blocked by buildings and hills and can propagate beyond the horizon following the curvature of the Earth; this is called the </span>ground wave<span>. Practical groundwave reception typically extends to 200–300 miles, with longer distances over terrain with higher </span>ground conductivity<span>, and greatest distances over salt water. Most broadcast stations use ground wave to cover their listening area. Hope this helps. :)</span>
Answer:
The balanced equation for this reaction will be
→ 
We can see that 1 mole of methane requires 4 moles of fluorine but we have 0.41 moles of CH4 and 0.56mole of F2
So using the unitary method we will get that
- 1 mole of CH4 → 4 mole of 4 mole of fluorine
- 0.41 mole of methane → 4*0.41 = 1.64 mole of fluorine for complete reaction
but we have only 0.56 mole of fluorine that means fluorine is the limiting reagent and the product will only be formed by only this amount of fluorine.
- 4 moles of fluorine → 1 mole of CF4
- 0.56 mole →
= 0.14mole of CF4
- 4 moles of fluorine → 4 moles of HF
- 0.56 mole of fluorine → 0.56 mole of HF
now to find the heat released we have the formula as
DELTA H = n * Delta H of product - n *delta H of reactant
where n is the moles of the reactant and product.
note: since no information is given about the enthalpies of the species we leave it on general equation also you need to add the product side enthalpy of the species present and similarly on the product side.
Answer:
Total partial pressure, Pt = 821 mm Hg
Partial pressure of Helium, P1 = 105 mm Hg
Partial pressure of Nitrogen, P2 = 312 mm Hg
Partial pressure of Oxygen, P3 = ? mm Hg
According to Dalton's law of Partial pressures,
Pt = P1 + P2 + P3
So, <u>P3 = 404 mm Hg</u>