Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
Answer:
The equation representing the value of <em>n</em> is,
.
Step-by-step explanation:
The formula to compute the sum of the degrees, S, of the interior angles of a polygon is:

Compute the equation of <em>n</em> as follows:



Thus, the equation representing the value of <em>n</em> is,
.
Answer:
A
Step-by-step explanation:
100-25*4=5 squared*2 sqaured
so A
Answer:
c
Step-by-step explanation: