Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Answer:
Conduction
Explanation:
The heat can be transferred in the substances in three ways: conduction, convection, and radiation.
The conduction happens inside the material, usually a solid, and the heat flows as the molecules of the substance are agitated. The convection happens when there are different substances in touch, so it is the heat passage from a solid to a liquid or gas, from a gas to a liquid or vice versa. The radiation occurs between substances that are far away and the heat flows by electromagnetic waves.
Thus, in the wire, the heat flows by conduction.
Answer:
The concentration of the pyridinium cation at equilibrium is 1.00×10⁻³ M
Explanation:
In water we have
C₅H₅NHBr + H₂O ⇒ C₅H₅NH+ + Br−
Pyridinium Bromide (C₅H₅NHBr) Dissociates Completely Into C₅H₅NH+ And Br− as such it is a strong Electrolyte.
Therefore the number of moles of positive ion produced per mole of C₅H₅NHBr is one
pH = - log [H₃O⁺] Therefore 10^-pH = [H₃O⁺] = concentration of C₅H₅NHBr
= 10⁻³ = 0.001M = concentration of C₅H₅NHBr
The concentration of C₅H₅NHBr is = 1.00×10⁻³ M to two places of decimal
First, let us define Electronegativity. Electronegativity is "the ability of an atom to attract electrons." In addition, electronegativity increases in elements from left to right, while on the other hand, electronegativity decreases from top to bottom in an element group. It decreases because the atomic radius increases as we go downward an element in the group.