Answer:
lateral area = 2320 m²
Step-by-step explanation:
The question wants us to calculate the lateral area of a square base pyramid. The square base pyramid has a side of 40 meters.The height is 21 meters.
Half of the square base is 40/2 = 20 meters . With the height it forms a right angle triangle. The hypotenuse side is the slant height of the pyramid.
Using Pythagoras's theorem
c² = a² + b²
c² = 20² + 21²
c² = 400 + 441
c² = 841
square root both sides
c = √841
c = 29 meters
The slant height of the pyramid is 29 meters.
The pyramid has four sided triangle. The lateral area is 4 multiply by the area of one triangle.
area of triangle = 1/2 × base × height
base = 40 meters
height = 29 meters
area = 1/2 × 40 × 29
area = 580
area of one triangle = 580 m²
Lateral area = 4(580)
lateral area = 2320 m²
THIS IS THE COMPLETE QUESTION BELOW
The demand equation for a product is p=90000/400+3x where p is the price (in dollars) and x is the number of units (in thousands). Find the average price p on the interval 40 ≤ x ≤ 50.
Answer
$168.27
Step by step Explanation
Given p=90000/400+3x
With the limits of 40 to 50
Then we need the integral in the form below to find the average price
1/(g-d)∫ⁿₐf(x)dx
Where n= 40 and a= 50, then if we substitute p and the limits then we integrate
1/(50-40)∫⁵⁰₄₀(90000/400+3x)
1/10∫⁵⁰₄₀(90000/400+3x)
If we perform some factorization we have
90000/(10)(3)∫3dx/(400+3x)
3000[ln400+3x]₄₀⁵⁰
Then let substitute the upper and lower limits we have
3000[ln400+3(50)]-ln[400+3(40]
30000[ln550-ln520]
3000[6.3099×6.254]
3000[0.056]
=168.27
the average price p on the interval 40 ≤ x ≤ 50 is
=$168.27
Answer:
-2y+x
Step-by-step explanation:
x-2y
-2y+x