Answer:
See below
Explanation:
Set up your pendulum
measure its length and time the period ( you could time 100 of them and divide the time result by 100 to get the period, T)
then use
T = 2 pi sqrt (L/g) T = period L = length g = gravity
What are you asking here?
(a) 764.4 N
The weight of the astronaut on Earth is given by:

where
m is the astronaut's mass
g is the acceleration due to gravity
Here we have
m = 78.0 kg
g = 9.8 m/s^2 at the Earth's surface
So the weight of the astronaut is

(b) 21.1 N
The spacecraft is located at a distance of

from the center of Earth.
The acceleration due to gravity at a generic distance r from the Earth's center is

where G is the gravitational constant and M is the Earth's mass.
We know that at a distance of r = R (at the Earth's surface) the value of g is 9.8 m/s^2, so we can write:
(1)
the acceleration due to gravity at r=6R instead will be

And substituting (1) into this formula,

So the weight of the astronaut at the spacecratf location is

<span>"the true statement is: An ellipsis indicates the omission of a word or word
Here is an example on the usage of ellipsis:
I don't know . . . i'm not even sure how i feel about him.
The dots acted as an interlude that connected one response with another statement</span>