THE ANSWER SHOULD BE C AND B
Answer:

Step-by-step explanation:
Distance Formula: 
Simply plug in your 2 coordinates into the formula to find distance <em>d</em>:






first off, let's split the triplet into two equations, then from there on we'll do substitution.
![\cfrac{y}{x-z}=\cfrac{x}{y}=\cfrac{x+y}{z}\implies \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=\cfrac{x+y}{z} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the 1st equation}}{\cfrac{y}{x-z}=\cfrac{x}{y}\implies }y^2=\underline{x^2-xz} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the 2nd equation}}{\cfrac{x}{y}=\cfrac{x+y}{z}\implies }xz=xy+y^2\implies \stackrel{\textit{substituting for }y^2}{xz=xy+(\underline{x^2-xz})}](https://tex.z-dn.net/?f=%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%201st%20equation%7D%7D%7B%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5Cimplies%20%7Dy%5E2%3D%5Cunderline%7Bx%5E2-xz%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%202nd%20equation%7D%7D%7B%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%5Cimplies%20%7Dxz%3Dxy%2By%5E2%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20for%20%7Dy%5E2%7D%7Bxz%3Dxy%2B%28%5Cunderline%7Bx%5E2-xz%7D%29%7D)
![2xz=xy+x^2\implies 2xz=x(y+x)\implies \cfrac{2xz}{x}=y+x \\\\\\ 2z=y+x\implies 2=\cfrac{y+x}{z}\implies 2=\cfrac{x+y}{z} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{}{ \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=\cfrac{x+y}{z} \end{cases}}\implies \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=2 \end{cases}\implies \begin{cases} \cfrac{y}{x-z}=2\\[2em] \cfrac{x}{y}=2 \end{cases}](https://tex.z-dn.net/?f=2xz%3Dxy%2Bx%5E2%5Cimplies%202xz%3Dx%28y%2Bx%29%5Cimplies%20%5Ccfrac%7B2xz%7D%7Bx%7D%3Dy%2Bx%20%5C%5C%5C%5C%5C%5C%202z%3Dy%2Bx%5Cimplies%202%3D%5Ccfrac%7By%2Bx%7D%7Bz%7D%5Cimplies%202%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%7D%7B%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5Cend%7Bcases%7D%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D2%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D2%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D2%20%5Cend%7Bcases%7D)
that of course, is only true if x + y, or our numerator doesn't turn into 0, if it does then our fraction becomes 0 and our equation goes south. Keeping in mind that x,y and z are numeric values that correlate like so.
Answer with explanation:
Since the motion of the ball is projectile motion we shall use the equations for projectile motion.
The maximum height achieved by the projectile is given by
Applying the values we get

The range of the projectile is given by

Applying values we get

thus the maximum horizontal distance reached by the ball equals 7.339 meters after which it bounces thus a person standing 8 meters away will not be able to catch it.
(The height of the players is not taken into account since no info is given about their height.)