Answer:
1.28 m
Explanation:
Generally, pressure of fluid is given by
where g is acceleration due to gravity, h is the height and
is the density
Considering that the pressure for mercury is same as for blood only that the height and density of fluid are different then
Since g is constant, then
Making
the subject of the formula then

Where subscripts m and b denote mercury and blood respectively
Assuming density of blood is 1060 Kg/m3, density of mercury as 13600 Kg/m3 and substituting height of mercury for 0.1 m then

Answer:
350 ft/s²
Explanation:
First, convert mph to ft/s.
58 mi/hr × (5280 ft/mi) × (1 hr / 3600 s) = 85.1 ft/s
Given:
v₀ = 85.1 ft/s
v = 0 ft/s
t = 0.24 s
Find: a
v = at + v₀
a = (v − v₀) / t
a = (0 ft/s − 85.1 ft/s) / 0.24 s
a = -354 ft/s²
Rounded to two significant figures, the magnitude of the acceleration is 350 ft/s².
Answer:
Water
Explanation:
windmills were used to bring water to farms in ancient times.
The rubber protects him from being electrocuted by the flow of current going through the plug.
Hope this helped!!
Answer:
<u>We are given:</u>
displacement (s) = 130 m
acceleration (a) = -5 m/s²
final velocity (v) = 0 m/s [the cars 'stops' in 130 m]
initial velocity (u) = u m/s
<u>Solving for initial velocity:</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(0)² - (u)² = 2(-5)(130)
-u² = -1300
u² = 1300
u = √1300
u = 36 m/s