Answer:
Work done against gravity in lifting an object becomes potential energy of the object-Earth system. The change in gravitational potential energy, ΔPEg, is ΔPEg = mgh, with h being the increase in height and g the acceleration due to gravity.
Explanation:
You're Welcome.
In fresh water sound waves travel at 1497m/s at 25 degrees, I'll assume that's the characteristics of the water.
If it's 0.01s then you need to divide the speed by 100 to get the, 14.97, however it gets there and back in that time so you need to halve it.
<u>7.485m</u>
Answer:
6.0 m/s
Explanation:
According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.
Therefore, we can write:

or

where:
m is the mass of the athlete
u is the initial speed of the athlete (at the bottom)
0 is the initial potential energy of the athlete (at the bottom)
v = 0.80 m/s is the final speed of the athlete (at the top)
is the acceleration due to gravity
h = 1.80 m is the final height of the athlete (at the top)
Solving the equation for u, we find the initial speed at which the athlete must jump:

Answer:
Series is the correct answer
Force = (mass) x (acceleration) (Newton's second law of motion)
Divide both sides of the equation by 'acceleration', and you have
Mass = (force) / (acceleration)
Mass = 17 newtons / 3.75 meters per second-sqrd = 4.533 kilograms (rounded)