1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Crazy boy [7]
3 years ago
6

Keaton is asked to solve the following physics problem:

Physics
1 answer:
RideAnS [48]3 years ago
5 0

Answer:

The answer is C "think about the problem first, systematically consider all factors, and form a hypothesis"

Explanation:

In physics there is some basic fomula that sir Isacc Newton proposed under the topic of motion. The three formulas are below;

<em>1) v=u+at</em>

<em>2)v^2=u^2+2as</em>

<em>3)s=ut+(1/2)(at^2)</em>

the variables are explained below;

u= initial velocity of the body

a=acceleration/Speed of the body

t= time taken by the body while travelling

s= displacement of the body.

Therefore to solve keatons problem, the factors(variables) in the formulas above need to be systematically considered. Since the ball was dropped from the top of the building, the initial velocity is 0 because the body was at rest. Also the acceleration will be acceleration due to gravity (9.8m/s^2)

You might be interested in
A small space probe of mass 170 kg is launched from a spacecraft near Mars. It travels toward the surface of Mars, where it will
alukav5142 [94]

Answer:

The change  in momentum is  \Delta p =   kg \cdot m/s      

Explanation:

From the question we are told that  

       The mass of the probe is  m = 170 kg

       The location of the prob at time t = 22.9 s is  A  =

       The  momentum at time  t = 22.9 s is  p = < 51000, -7000, 0> kg m/s

        The net force on the probe is  F =  N

Generally the change in momentum is mathematically represented as

              \Delta p = F * \Delta t

The initial time is   22.6 s

 The final time  is  22.9 s

             Substituting values  

           \Delta p =  * (22.9 - 22.6)

            \Delta p =  * (0.3)  

              \Delta p =   kg \cdot m/s        

 

6 0
3 years ago
A rocket is launched at an angle of 53.0° above the horizontal with an initial speed of 103 m/s. The rocket moves for 3.00 s alo
Serggg [28]

Before the engines fail (0\le t\le3.00\,\rm s), the rocket's horizontal and vertical position in the air are

x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t^2

y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ\,t+\dfrac12\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t^2

and its velocity vector has components

v_x=\left(103\,\frac{\rm m}{\rm s}\right)\cos53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\cos53.0^\circ t

v_y=\left(103\,\frac{\rm m}{\rm s}\right)\sin53.0^\circ+\left(32.0\,\frac{\rm m}{\mathrm s^2}\right)\sin53.0^\circ t

After t=3.00\,\rm s, its position is

x=273\,\rm m

y=362\,\rm m

and the rocket's velocity vector has horizontal and vertical components

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}

After the engine failure (t>3.00\,\rm s), the rocket is in freefall and its position is given by

x=273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)t

y=362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2

and its velocity vector's components are

v_x=120\,\frac{\rm m}{\rm s}

v_y=159\,\frac{\rm m}{\rm s}-gt

where we take g=9.80\,\frac{\rm m}{\mathrm s^2}.

a. The maximum altitude occurs at the point during which v_y=0:

159\,\frac{\rm m}{\rm s}-gt=0\implies t=16.2\,\rm s

At this point, the rocket has an altitude of

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)(16.2\,\rm s)-\dfrac g2(16.2\,\rm s)^2=1650\,\rm m

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve y=0 for t, then add 3 seconds to this time:

362\,\mathrm m+\left(159\,\frac{\rm m}{\rm s}\right)t-\dfrac g2t^2=0\implies t=34.6\,\rm s

So the rocket stays in the air for a total of 37.6\,\rm s.

c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute x for this time t:

273\,\mathrm m+\left(120\,\frac{\rm m}{\rm s}\right)(34.6\,\rm s)=4410\,\rm m

5 0
3 years ago
What is Force!????!?​
spin [16.1K]

A force is a push or pull upon an object resulting from the object's interaction with another object.

4 0
3 years ago
Read 2 more answers
(c) An object of mass 100 kg is accelerated uniformly from a velocity of 15m/s to 20 m/s in 10 s.
Pavlova-9 [17]

Explanation:

momentum = mass x velocity

initial momentum = 100 x 15 = 1500kgm/s

after momentum = 100 x 20 = 2000kgm/s

a =(v-u)/t

a = (20-15)/10

a = 5/10

a = 0.5m/s²

f = ma

f = 100 x 0.5

f = 50N

7 0
3 years ago
A constant friction force of 25 N acts on a 65-kg skier for 15 s on level snow. What is the skier’s change in velocity
nikdorinn [45]

Answer:

\Delta v=5.77m/s

Explanation:

Newton's 2nd Law relates the net force <em>F</em> on an object of mass <em>m </em>with the acceleration <em>a</em> it experiments by <em>F=ma.</em> In our case the net force is the friction force, since it's the only one the skier is experimenting horizontally and the vertical ones cancel out since he's not moving in that direction. Our acceleration then will be:

a=\frac{F}{m}

Also, acceleration is defined by the change of velocity \Delta v in a given time t, so we have:

a=\frac{\Delta v}{t}

Since we want the change in velocity, <em>mixing both equations</em> we conclude that:

\Delta v=at=\frac{Ft}{m}

Which for our values means:

\Delta v=\frac{Ft}{m}=\frac{(25N)(15s)}{(65Kg)}=5.77m/s

4 0
3 years ago
Other questions:
  • The cycle of day and night is a result of Earth’s spinning on its axis, which is Earth’s .
    6·1 answer
  • Genetic information responsible for physical characteristics such as eye color, height, hair color, and skin color can be found
    10·1 answer
  • Greg is in a bike race. At mile marker four (out of ten), his speed was measured at 13.5 mph.
    13·2 answers
  • How much voltage (in terms of the power source voltage bV) will the capacitor have when it has started at zero volts potential d
    15·1 answer
  • Which statement about polymers is true?
    12·1 answer
  • Using the diagrams below, choose the Free Body Diagram that represents the following scenario.
    14·1 answer
  • What happens to friction if the velocity is constant? What will it equal to and what formula can be used to find it? Is it Fn =
    15·1 answer
  • 19. A stone has a mass of 390 g and a density of 2.7 g/cm3.
    7·1 answer
  • Which property allows objects that do not produce their own light
    14·1 answer
  • A truck weighing 5 * 10^3 kgf and a cart weighting 500 kgf are moving with the same speed compare their kinetic energies?​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!