Answer:
Explanation:
Ketcher 01232019462D 1 1.00000 0.00000 0 5 4 0 0 0 999 V2000 -0.0330 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 2.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 2.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 0.8330 3.7250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1.6990 1.2250 0.0000 C 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 2 3 1 0 0 0 2 4 1 0 0 0 3 5 1 0 0 0 M END
A) Head to tail joining of monomers. :) (confirmed correct answer, I took the test)
There are 4 significant figures! Start counting after the first non-zero digit :)
Hope this helps.
Answer:
1) When 6.97 grams of sodium(s) react with excess water(l), 56.0 kJ of energy are evolved.
2) When 10.4 grams of carbon monoxide(g) react with excess water(l), 1.04 kJ of energy are absorbed.
Explanation:
1) The following thermochemical equation is for the reaction of sodium(s) with water(l) to form sodium hydroxide(aq) and hydrogen(g).
2 Na(s) + 2H₂O(l) ⇒ 2NaOH(aq) + H₂(g) ΔH = -369 kJ
The enthalpy of the reaction is negative, which means that 369 kJ of energy are evolved per 2 moles of sodium. The energy evolved for 6.97 g of Na (molar mass 22.98 g/mol) is:

2) The following thermochemical equation is for the reaction of carbon monoxide(g) with water(l) to form carbon dioxide(g) and hydrogen(g).
CO(g) + H₂O(l) ⇒ CO₂(g) + H₂(g) ΔH = 2.80 kJ
The enthalpy of the reaction is positive, which means that 2.80 kJ of energy are absorbed per mole of carbon monoxide. The energy evolved for 10.4 g of CO (molar mass 28.01 g/mol) is:
