Yo sup??
the answer is option A ie
96.056 grams/mole
because mass of S is 32 gm and mass of O is 16 gm
Hope this helps
Answer:
The law of conservation of mass states that the quantity of the mass can neither be added to, neither can it be removed. The greater picture's mass will always be the same amount.
Hello!
The answer is Evaporation
When you add heat to water, it boils, releasing gas into the air. This is called Evaporation. The water changes from a liquid to a gas.
Hope this helped!
Answer:

Explanation:
We are given the volumes and concentrations of two reactants, so this is a limiting reactant problem.
We know that we will need moles, so, lets assemble all the data in one place.
Cu²⁺ + 4NH₃ ⟶ Cu(NH₃)₄²⁺
V/mL: 3.00 7.00
c/mol·L⁻¹: 0.050 0.20
1. Identify the limiting reactant
(a) Calculate the moles of each reactant

(b) Calculate the moles of Cu(NH₃)₄²⁺ that can be formed from each reactant
(i) From Cu²⁺

(ii) From NH₃

NH₃ is the limiting reactant, because it forms fewer moles of the complex ion.
(c) Concentration of the complex ion

Answer:
Equilibrium shifts to produce more reactant
Explanation:
- <em>Le Châtelier's principle</em> <em>states that when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.</em>
- When more product is added to the solution:
<em>This will increase the concentration of the products side, so the reaction will be shifted to the lift side (reactants side) to suppress the increase in the concentration of Products.</em>
<em />
<em>So, the right choice is: Equilibrium shifts to produce more reactant</em>