Answer:
See the explanation below.
Explanation:
This analysis can be easily deduced by means of Newton's second law which tells us that the sum of the forces or the total force on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = total force [N]
m = mass [kg]
a = acceleration [m/s²]
We must clear the acceleration value.

We see that the term of the mass is in the denominator, so that if the value of the mass is increased the acceleration decreases, since they are inversely proportional.
i dont get it so much but
The weight of the bag pack is 8.2 N. g = 1.64 m/s2. Hence, the acceleration due to gravity on moon is 1.64 m/s2. sooo? is it right
Answer:
Q=∆U+W
Explanation:
work done+ change in internal energy = heat supplied to change the internal energy
(1st law of thermodynamics)
Answer:
(A) 7.9 m/s^{2}
(B) 19 m/s
(C) 91 m
Explanation:
initial velocity (U) = 0 mph = 0 m/s
final velocity (V) = 85 mph = 85 x 0.447 = 38 m/s
initial time (ti) = 0 s
final time (t) = 4.8 s
(A) acceleration = 
=
= 7.9 m/s^{2}
(B) average velocity = 
=
= 19 m/s
(C) distance travelled (S) = ut + 
= (0 x 4.8) +
= 91 m