The excerpt from an essay about higher education that most clearly shows an example of logos is:
- Option d: Many college students look to land an exciting internship, believing that it will open doors in their field of study. However, internships can often distract from schoolwork.
<h3>What is Logos?</h3>
The Logos Definition is one that is often argued by a lot of people as people tends to appeal to others emotions and some other times, people do appeal to one's' ethics or morals.
The term logos is a term that connote the use of logic. It also includes the use of deductive reasoning to get to a conclusion.
The excerpt from an essay about higher education that most clearly shows an example of logos is:
- Option d: Many college students look to land an exciting internship, believing that it will open doors in their field of study. However, internships can often distract from schoolwork.
Option d is correct because it shows the cause and its effect.
Learn more about logos from
brainly.com/question/4656950
#SPJ1
Answer:
![[H^+]=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.00332M)
Explanation:
Hello,
In this case, considering the dissociation of valeric acid as:

Its corresponding law of mass action is:
![Ka=\frac{[H^+][C_5H_9O_2^-]}{[HC_5H_9O_2]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BC_5H_9O_2%5E-%5D%7D%7B%5BHC_5H_9O_2%5D%7D)
Now, by means of the change
due to dissociation, it becomes:

Solving for
we obtain:

Thus, since the concentration of hydronium equals
, the answer is:
![[H^+]=x=0.00332M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.00332M)
Best regards.
Answer:
D
Explanation:
Anions are attracted to the positive end of a dipole, while the cations are attracted to the negative end. As the size of the dipole moment or the ionic charge increases, the vastness of the attraction also increases. This type of attraction is important for solutions of ionic substances in polar liquids.
<h3><u>Answer</u>;</h3>
= 226 Liters of oxygen
<h3><u>Explanation</u>;</h3>
We use the equation;
LiClO4 (s) → 2O2 (g) + LiCl, to get the moles of oxygen;
Moles of LiClO4;
(500 g LiClO4) / (106.3916 g LiClO4/mol)
= 4.6996 moles
Moles of oxygen;
But, for every 1 mol LiClO4, two moles of O2 are produced;
= 9.3992 moles of Oxygen
V = nRT / P
= (9.3992 mol) x (8.3144621 L kPa/K mol) x (21 + 273) K / (101.5 kPa)
= 226 L of oxygen