<h2>
Hello!</h2>
The answers are:

<h2>
Why?</h2>
Since we are given the margin of error and it's equal to ±0.1 feet, and we know the surveyed distance, we can calculate the maximum and minimum distance. We must remember that margin of errors usually involves and maximum and minimum margin of a measure, and it means that the real measure will not be greater or less than the values located at the margins.
We know that the surveyed distance is 1200 feet with a margin of error of ±0.1 feet, so, we can calculate the maximum and minimum distances that the reader could assume in the following way:


Have a nice day!
Answer: Associative Property
Step-by-step explanation:
9mph because 20 minutes time 3 is one hour so multiply 3 by 3 to get 9
Answer: approximately 49 feets
Step-by-step explanation:
The diagram of the tree is shown in the attached photo. The tree fell with its tip forming an angle of 36 degrees with the ground. It forms a right angle triangle,ABC. Angle C is gotten by subtracting the sum of angle A and angle B from 180(sum of angles in a triangle is 180 degrees).
To determine the height of the tree, we will apply trigonometric ratio
Tan # = opposite/ adjacent
Where # = 36 degrees
Opposite = x feets
Adjacent = 25 feets
Tan 36 = x/25
x = 25tan36
x = 25 × 0.7265
x = 18.1625
Height of the tree from the ground to the point where it broke = x = 18.1625 meters.
The entire height of the tree would be the the length of the fallen side of the tree, y + 18.1625m
To get y, we will use Pythagoras theorem
y^2 = 25^2 + 18.1625^2
y^2 = 625 + 329.88
y^2 = 954.88
y = √954.88 = 30.9 meters
Height of the tree before falling was
18.1625+30.9 = 49.0625
The height of the tree was approximately 49 feets
The answer i D because 11-6=5