The relationship between Fahrenheit and Celsius is:
°F = 1.8*°C + 32
If we differentiate the given expression to find the relationship between a unit change of °F and °C, we get:
Δ°F = 1.8*Δ°C
This means that a change in 1 degree Fahrenheit is equivalent to a change of 1.8 degrees Celsius. Moreover, a one degree change in Fahrenheit is the same as a one-degree change on the Rankine scale, so, ranking the scales in order from higher change to lower change:
1) Fahrenheit = Rankine
2) Celsius = Kelvin
Answer:
400 cm³ of ammonia, NH₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 cm³ of H₂ reacted to produce 2 cm³ of NH₃.
Finally, we shall determine the maximum volume of ammonia, NH₃ produced from the reaction. This can be obtained as illustrated below:
From the balanced equation above,
3 cm³ of H₂ reacted to produce 2 cm³ of NH₃.
Therefore, 600 cm³ of H₂ will react to produce = (600 × 2)/3 = 400 cm³ of NH₃.
Thus, 400 cm³ of ammonia, NH₃ were obtained from the reaction.
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
Answer:
Volume = mass/density
Rearrange the equation for Mass:
Mass = Volume x Density
That is one way you can do it
Conceptually, just look at the units, the wood block's density is 0.6<u>g/cm^3</u> while the volume is 2.2 <u>cm^3</u>
So if density is every gram per centimeter cubed, and the volume is at centimeter cubed, the logical thing to do would be to multiply the density by the volume to get the total mass.
0.6g/cm^3 x 2.2cm^3 = 1.32g
<u>Therefore the mass of the block of wood is 1.32g </u>