The closure temperature represents the point when isotopes are no longer free to move out of a crystal lattice.
Answer: Option C
<u>Explanation:</u>
The closure temperature can also be termed as blocking temperature. It is mostly used in radiometric dating. As the temperature decreases, below a certain point the isotopes may get freeze in their lattice positions. And there may be slowing of diffusion.
At the closure temperature, that rate of diffusion will be zero as the isotopes will be no longer free to move out of crystal lattice. So, this is termed as closure or blocking temperature. As the isotopes loose their ability to move, their concentration will remain fixed in their position leading to measurement of radiation dating.
Answer:
0.2s
Explanation:
SO for the dolphin to hear its echo, the sound wave must travel a distance twice as much as the displacement between the dolphin and the ocean floor. So d = 154 * 2 = 308 m
Since the speed of sound in ocean floor is v = 1533m/s we can find out the time by dividing the distance d by the speed of sound
t = d / v = 308 / 1533 = 0.2s
The moon is moving away from Earth at a rate of approximately 3.78 cm per year.
This migration of the Moon from the Earth is mainly due to the action of the Earth tides. It can be explained as follows:
- the Moon exerts a gravitational force on the Earth, which is stronger at the Equator (since the Equator is closer to the Moon), creating the tides
- However, the Earth rotates faster on its axis (one rotation every 24 hours) than the Moon (one rotation every 27 days), therefore the tidal bulge on Earth tries to pull the Moon "ahead" in its orbit. As a result, the Moon tends to sped up.
<span>- As opposite reaction, the Earth tends to slow down in its rotation, with a loss of angular momentum. Since the angular momentum must be conserved, the radius of the orbit of the Moon becomes larger, and this explains why the Moon is moving away from the Earth.</span>
Answer:
The beat frequency is 6.378 Hz.
Explanation:
Given that,
Length of wire = 10000 m
Weight = 81.34 N
Distance = 0.660 m
Tension = 52 N
Frequency = 196 Hz
We need to calculate the mass of the wire
Using formula of weight


Put the value into the formula


The mass per unit length of the wire

Put the value into the formula


We need to calculate the frequency in the wire
Using formula of frequency

Put the value into the formula


We need to calculate the beat frequency
Using formula of beat frequency

Put the value into the formula


Hence, The beat frequency is 6.378 Hz.