Answer:
40 kg.m/s
Explanation:
Momentum, p is defined as the product of mass and velocity of an object. Numerically, it is represented as, p=mv where m is mass of the object and v is the velocity in which the object moves, with keen observation on the direction before and after collision. Substituting 10 kg for m and 4 m/s for v then momentum, P=10*4=40 kg.m/s
Answer:
Let d be the density of fluid.
So , Initial reading of balance, F1 =30dg N
After the level reaches 50cm^3
Final reading of balance , F2 =50dg N
Given that difference between final and initial reading is 30g
i.e, F2 −F1
=30 g
⟹50dg−30dg=30g
⟹20dg=30g
⟹d=30g/20g
⟹d=1.5g/cm^3
So, density of fluid is 1.5g/cm^3
Answer:
Option B
Explanation:
The electrons flow from negative terminal of a battery to the positive terminal because as the charge of electron is negative, it will get repelled by the negative terminal of the battery
Conventional flow actually assumes that the current flows out of the positive terminal, through the circuit and into the negative terminal of the battery
It actually says that direction of flow of current is in opposite direction to the direction of flow of electrons
The direction of current will not change even a resistor is placed in the circuit and it generates a potential difference across the resistor
But the current tries to move in such a way in which there will be less resistance to the flow
Answer:

Explanation:
The standard form of the 2nd order differential equation governing the motion of mass-spring system is given by

Where m is the mass, ζ is the damping constant, and k is the spring constant.
The spring constant k can be found by




The damping constant can be found by



Finally, the mass m can be found by



Where g is approximately 32 ft/s²

Therefore, the required differential equation is


The initial position is

The initial velocity is
