1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
8

A propagating wave in space with electric and magnetic components. These components oscillate at right angles to each other. It

may travel in a vacuum.
Physics
2 answers:
zimovet [89]3 years ago
8 0

Answer:

electromagnetic

Explanation:

Lilit [14]3 years ago
4 0

Answer: electromagnetic

Explanation:

You might be interested in
Q6. When a girl steps on to a weighing machine, it shows a reading of 42kg.
tigry1 [53]

Answer:

92.5 pounds

Explanation:

5 0
2 years ago
Calculate the kinetic energy in joules of a 1,500 kg car that is moving at a speed of 42 km/h
Rzqust [24]
Data:
KE (Kinetic Energy) = ? (Joule)
m (mass) = 1500 Kg 
v (speed) = 42 Km/h
converting to m/s (42 / 3.6), we have: v (speed) = 11.6 m/s

Formula:
K_{E} =   \frac{1}{2} m*v^2

Solving:
K_{E} = \frac{1}{2} m*v^2
K_{E} =  \frac{1}{2} *1500*(11.6)^2
K_{E} = \frac{1}{2} *1500*134.56
K_{E} =  \frac{201840}{2}
\boxed{\boxed{K_{E} = 100920\:Joule}}\end{array}}\qquad\quad\checkmark





4 0
3 years ago
5/6 When switched on, the grinding machine accelerates from rest to its operating speed of 3450 rev/min in 6 seconds. When switc
ludmilkaskok [199]

Answer:

Δθ₁ =  172.5 rev

Δθ₁h =  43.1 rev

Δθ₂ =   920 rev

Δθ₂h = 690 rev

Explanation:

  • Assuming uniform angular acceleration, we can use the following kinematic equation in order to find the total angle rotated during the acceleration process, from rest to its operating speed:

       \Delta \theta = \frac{1}{2} *\alpha *(\Delta t)^{2}  (1)  

  • Now, we need first to find the value of  the angular acceleration, that we can get from the following expression:

       \omega_{f1}  = \omega_{o} + \alpha * \Delta t  (2)

  • Since the machine starts from rest, ω₀ = 0.
  • We know the value of ωf₁ (the operating speed) in rev/min.
  • Due to the time is expressed in seconds, it is suitable to convert rev/min to rev/sec, as follows:

       3450 \frac{rev}{min} * \frac{1 min}{60s} = 57.5 rev/sec (3)

  • Replacing by the givens in (2):

       57.5 rev/sec = 0 + \alpha * 6 s  (4)

  • Solving for α:

       \alpha = \frac{\omega_{f1}}{\Delta t} = \frac{57.5 rev/sec}{6 sec} = 9.6 rev/sec2 (5)

  • Replacing (5) and Δt in (1), we get:

       \Delta \theta_{1} = \frac{1}{2} *\alpha *(\Delta t)^{2} = \frac{1}{2} * 6.9 rev/sec2* 36 sec2 = 172.5 rev  (6)

  • in order to get the number of revolutions during the first half of this period, we need just to replace Δt in (6) by Δt/2, as follows:

       \Delta \theta_{1h} = \frac{1}{2} *\alpha *(\Delta t/2)^{2} = \frac{1}{2} * 6.9 rev/sec2* 9 sec2 = 43.2 rev  (7)

  • In order to get the number of revolutions rotated during the deceleration period, assuming constant deceleration, we can use the following kinematic equation:

       \Delta \theta = \omega_{o} * \Delta t + \frac{1}{2} *\alpha *(\Delta t)^{2}  (8)

  • First of all, we need to find the value of the angular acceleration during the second period.
  • We can use again (2) replacing by the givens:
  • ωf =0 (the machine finally comes to an stop)
  • ω₀ = ωf₁ = 57.5 rev/sec
  • Δt = 32 s

       0 = 57.5 rev/sec + \alpha * 32 s  (9)

  • Solving for α in (9), we get:

       \alpha_{2}  =- \frac{\omega_{f1}}{\Delta t} = \frac{-57.5 rev/sec}{32 sec} = -1.8 rev/sec2 (10)

  • Now, we can replace the values of ω₀, Δt and α₂ in (8), as follows:

        \Delta \theta_{2}  = (57.5 rev/sec*32) s -\frac{1}{2} * 1.8 rev/sec2\alpha *(32s)^{2} = 920 rev (11)

  • In order to get finally the number of revolutions rotated during the first half of the second period, we need just to replace 32 s by 16 s, as follows:
  • \Delta \theta_{2h}  = (57.5 rev/sec*16 s) -\frac{1}{2} * 1.8 rev/sec2\alpha *(16s)^{2} = 690 rev (12)
7 0
2 years ago
____ 1. A mineral is inorganic, which means that it contains
Dimas [21]

Answer:

no material that were once part of living things

8 0
3 years ago
If a bow holds 500J of potential energy as the arrow is pulled back, how much kinetic energy will the arrow have after it has be
ale4655 [162]

Answer:

500J

Explanation:

The arrow will have an energy of 500J after it has been released from its state of rest.

This is compliance with the law of conservation of energy which states that "in every system, energy is neither created nor destroyed but transformed from one form to another".

  • The energy at rest which is the potential energy is 500J
  • This energy will be converted to kinetic energy in total after the arrow has been released.
  • This way, no energy is lost and we can account for the energy transformations occurring.
4 0
2 years ago
Other questions:
  • Sally walks 10 meters forward and then 5 meters backwards. a) What is Sally’s displacement? Give magnitude (#) and direction – d
    10·1 answer
  • At depths of greater than 60 m, ice moves by plastic deformation. What causes this transition from brittle to ductile behavior?
    15·1 answer
  • What is the ostrich’s average acceleration from 9.0 to 18s
    15·1 answer
  • PLEASE GO ANSWER MY 3 MOST RECENT QUESTION I NEED HELP!!!!!!!!!!!!!!
    6·1 answer
  • What is the scientific name given to potato​
    5·2 answers
  • If an amplitude modulation (AM) has an amplitude modulating signal of 0.5 V and carrier amplitude of 1.3 V, what is the modulati
    7·1 answer
  • An airplane flies for 1.25 hours with a constant speed of 1080 km/hr and then for another 2.5 hours with a constant speed of 984
    14·2 answers
  • A car is driving along a road at a speed of 50 km/hr. How far will the car travel in 5 hours?​
    11·1 answer
  • PLS HELP FIND THE AVREGE KENETIC ENERGY!!
    14·1 answer
  • Why does our sun appear larger than any other star in our galaxy
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!