The key idea is that, if a vector field is conservative, then it has curl 0. Equivalently, if the curl is not 0, then the field is not conservative. But if we find that the curl is 0, that on its own doesn't mean the field is conservative.
1.
![\mathrm{curl}\vec F=\dfrac{\partial(5x+10y)}{\partial x}-\dfrac{\partial(-6x+5y)}{\partial y}=5-5=0](https://tex.z-dn.net/?f=%5Cmathrm%7Bcurl%7D%5Cvec%20F%3D%5Cdfrac%7B%5Cpartial%285x%2B10y%29%7D%7B%5Cpartial%20x%7D-%5Cdfrac%7B%5Cpartial%28-6x%2B5y%29%7D%7B%5Cpartial%20y%7D%3D5-5%3D0)
We want to find
such that
. This means
![\dfrac{\partial f}{\partial x}=-6x+5y\implies f(x,y)=-3x^2+5xy+g(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3D-6x%2B5y%5Cimplies%20f%28x%2Cy%29%3D-3x%5E2%2B5xy%2Bg%28y%29)
![\dfrac{\partial f}{\partial y}=5x+10y=5x+\dfrac{\mathrm dg}{\mathrm dy}\implies\dfrac{\mathrm dg}{\mathrm dy}=10y\implies g(y)=5y^2+C](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D5x%2B10y%3D5x%2B%5Cdfrac%7B%5Cmathrm%20dg%7D%7B%5Cmathrm%20dy%7D%5Cimplies%5Cdfrac%7B%5Cmathrm%20dg%7D%7B%5Cmathrm%20dy%7D%3D10y%5Cimplies%20g%28y%29%3D5y%5E2%2BC)
![\implies\boxed{f(x,y)=-3x^2+5xy+5y^2+C}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bf%28x%2Cy%29%3D-3x%5E2%2B5xy%2B5y%5E2%2BC%7D)
so
is conservative.
2.
![\mathrm{curl}\vec F=\left(\dfrac{\partial(-2y)}{\partial z}-\dfrac{\partial(1)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x)}{\partial z}-\dfrac{\partial(1)}{\partial z}\right)\vec\jmath+\left(\dfrac{\partial(-2y)}{\partial x}-\dfrac{\partial(-3x)}{\partial y}\right)\vec k=\vec0](https://tex.z-dn.net/?f=%5Cmathrm%7Bcurl%7D%5Cvec%20F%3D%5Cleft%28%5Cdfrac%7B%5Cpartial%28-2y%29%7D%7B%5Cpartial%20z%7D-%5Cdfrac%7B%5Cpartial%281%29%7D%7B%5Cpartial%20y%7D%5Cright%29%5Cvec%5Cimath%2B%5Cleft%28%5Cdfrac%7B%5Cpartial%28-3x%29%7D%7B%5Cpartial%20z%7D-%5Cdfrac%7B%5Cpartial%281%29%7D%7B%5Cpartial%20z%7D%5Cright%29%5Cvec%5Cjmath%2B%5Cleft%28%5Cdfrac%7B%5Cpartial%28-2y%29%7D%7B%5Cpartial%20x%7D-%5Cdfrac%7B%5Cpartial%28-3x%29%7D%7B%5Cpartial%20y%7D%5Cright%29%5Cvec%20k%3D%5Cvec0)
Then
![\dfrac{\partial f}{\partial x}=-3x\implies f(x,y,z)=-\dfrac32x^2+g(y,z)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3D-3x%5Cimplies%20f%28x%2Cy%2Cz%29%3D-%5Cdfrac32x%5E2%2Bg%28y%2Cz%29)
![\dfrac{\partial f}{\partial y}=-2y=\dfrac{\partial g}{\partial y}\implies g(y,z)=-y^2+h(y)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D-2y%3D%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%5Cimplies%20g%28y%2Cz%29%3D-y%5E2%2Bh%28y%29)
![\dfrac{\partial f}{\partial z}=1=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=z+C](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%3D1%3D%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dz%7D%5Cimplies%20h%28z%29%3Dz%2BC)
![\implies\boxed{f(x,y,z)=-\dfrac32x^2-y^2+z+C}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bf%28x%2Cy%2Cz%29%3D-%5Cdfrac32x%5E2-y%5E2%2Bz%2BC%7D)
so
is conservative.
3.
![\mathrm{curl}\vec F=\dfrac{\partial(10y-3x\cos y)}{\partial x}-\dfrac{\partial(-\sin y)}{\partial y}=-3\cos y+\cos y=-2\cos y\neq0](https://tex.z-dn.net/?f=%5Cmathrm%7Bcurl%7D%5Cvec%20F%3D%5Cdfrac%7B%5Cpartial%2810y-3x%5Ccos%20y%29%7D%7B%5Cpartial%20x%7D-%5Cdfrac%7B%5Cpartial%28-%5Csin%20y%29%7D%7B%5Cpartial%20y%7D%3D-3%5Ccos%20y%2B%5Ccos%20y%3D-2%5Ccos%20y%5Cneq0)
so
is not conservative.
4.
![\mathrm{curl}\vec F=\left(\dfrac{\partial(5y^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial y}\right)\vec\imath+\left(\dfrac{\partial(-3x^2)}{\partial z}-\dfrac{\partial(5z^2)}{\partial x}\right)\vec\jmath+\left(\dfrac{\partial(5y^2)}{\partial x}-\dfrac{\partial(-3x^2)}{\partial y}\right)\vec k=\vec0](https://tex.z-dn.net/?f=%5Cmathrm%7Bcurl%7D%5Cvec%20F%3D%5Cleft%28%5Cdfrac%7B%5Cpartial%285y%5E2%29%7D%7B%5Cpartial%20z%7D-%5Cdfrac%7B%5Cpartial%285z%5E2%29%7D%7B%5Cpartial%20y%7D%5Cright%29%5Cvec%5Cimath%2B%5Cleft%28%5Cdfrac%7B%5Cpartial%28-3x%5E2%29%7D%7B%5Cpartial%20z%7D-%5Cdfrac%7B%5Cpartial%285z%5E2%29%7D%7B%5Cpartial%20x%7D%5Cright%29%5Cvec%5Cjmath%2B%5Cleft%28%5Cdfrac%7B%5Cpartial%285y%5E2%29%7D%7B%5Cpartial%20x%7D-%5Cdfrac%7B%5Cpartial%28-3x%5E2%29%7D%7B%5Cpartial%20y%7D%5Cright%29%5Cvec%20k%3D%5Cvec0)
Then
![\dfrac{\partial f}{\partial x}=-3x^2\implies f(x,y,z)=-x^3+g(y,z)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20x%7D%3D-3x%5E2%5Cimplies%20f%28x%2Cy%2Cz%29%3D-x%5E3%2Bg%28y%2Cz%29)
![\dfrac{\partial f}{\partial y}=5y^2=\dfrac{\partial g}{\partial y}\implies g(y,z)=\dfrac53y^3+h(z)](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20y%7D%3D5y%5E2%3D%5Cdfrac%7B%5Cpartial%20g%7D%7B%5Cpartial%20y%7D%5Cimplies%20g%28y%2Cz%29%3D%5Cdfrac53y%5E3%2Bh%28z%29)
![\dfrac{\partial f}{\partial z}=5z^2=\dfrac{\mathrm dh}{\mathrm dz}\implies h(z)=\dfrac53z^3+C](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20z%7D%3D5z%5E2%3D%5Cdfrac%7B%5Cmathrm%20dh%7D%7B%5Cmathrm%20dz%7D%5Cimplies%20h%28z%29%3D%5Cdfrac53z%5E3%2BC)
![\implies\boxed{f(x,y,z)=-x^3+\dfrac53y^3+\dfrac53z^3+C}](https://tex.z-dn.net/?f=%5Cimplies%5Cboxed%7Bf%28x%2Cy%2Cz%29%3D-x%5E3%2B%5Cdfrac53y%5E3%2B%5Cdfrac53z%5E3%2BC%7D)
so
is conservative.
2 lines intersect at one point and stop there to form an L shaped angle they also form a square when you combine another right angle and they measure 90 degrees. Hope this helps!
Answer:
I think it would be D. I'm not sure but I think so. I thought C at first but (go to explanation)
Step-by-step explanation:
if image 1 is the original, then image 2 would be it reflected over the y axis
C says over the line y=0 which would be a horizontal line. x=0 would be a vertical line aka the y axis. I believe its D.
<span>Two figures are said to be congruent when they have the same shape and
size or if one object is a mirror image of the other object.<span> The right triangles trs and wuv are congruent when they have equal lengths of the sides and having equal sides, angles should as well be equal with the two triangles.</span></span>
There are 49 gallons of red paint.
I figured it out by doing the following:
![70 \: - \: 21 \: = \: 49](https://tex.z-dn.net/?f=70%20%5C%3A%20%20-%20%20%5C%3A%2021%20%5C%3A%20%20%3D%20%20%5C%3A%2049)
If you subtract the gallons of pink paint (21) from the total number of gallons (70), then you get the number of gallons of red paint (49) because 49 + 21 = 70. I hope that helps :)