A. Atoms of chlorine (Cl)
Explanation:
The atoms of chlorine are held together by non-polar covalent bonds.
- Covalent bonds are formed between two or more atoms having zero or very small electronegativity difference.
- For homonuclear molecules where the two bonding atom are of the same kind, the electronegativity difference is zero.
- This covalent bond type is called non-polar covalent bond.
- In this bond type, there is equal sharing of the electron pair between the atoms and there is no electrostatic charge on the molecule.
Learn more:
Covalent bond brainly.com/question/5258547
#learnwithBrainly
Answer:
4.52 mol/kg
Explanation:
Given data:
Mass of lithium fluoride = 22.1 g
Mass of water = 188 g
Molality = ?
Solution:
Molality:
It is the number of moles of solute into kilogram of solvent.
Formula:
Molality = number of moles of solute / kilogram solvent
Mathematical expression:
m = n/kg
Now we will convert the grams of LiF into moles.
Number of moles = mass/ molar mass
Number of moles = 22.1 g/ 26 g/mol
Number of moles = 0.85 mol
Now we will convert the g of water into kg.
Mass of water = 188 g× 1kg/1000 g = 0.188 kg
Now we will put the values in formula.
m = 0.85 mol / 0.188 kg
m = 4.52 mol/kg
The relative molecular mass of acid A : 50 g/mol
<h3>Further explanation</h3>
Given
40.0 cm³(40 ml) of 0.2M sodium hydroxide
0.2g of a dibasic acid
Required
the relative molecular mass of acid A
Solution
Titration formula
M₁V₁n₁=M₂V₂n₂
n=acid/base valence(number of H⁺/OH⁻)
NaOH ⇒ n = 1
Dibasic acid = diprotic acid (such as H₂SO₄)⇒ n = 2
mol = M x V
Input the value in the formula :(1 = NaOH, 2=dibasic acid)
0.2 x 40 x 1 = M₂ x V₂ x 2
M₂ x V₂ = 4 mlmol = 4.10⁻³ mol ⇒ mol of Acid A
The relative molecular mass of acid A (M) :

Answer:
correct option is A) atmospheric pollutants
Explanation:
- Nuclear power plant do not produce air pollution in the form of carbon dioxide and sulfur dioxide.
- Nuclear as radioactive waste is hazardous to all kind of life and the environment.
- Long-term storage of radioactive waste is required. It is important that waste stabilization is a form that does not react or deteriorate for years.
- If nuclear waste is wasted in the atmosphere or in the oceans and lagre lakes, it eventually comes into contact with organisms.