By 1.23 x 1024 you mean 10 to the power of 24 molecules? If so all you need to do is divide the number of molecules you have by Avagadros number, 6.022 x 10^23. This will give you the mols of water, or the mols of anything, since there is always 6.022 x 10^23 molecules in 1 mol of substance.
1.23x10^24 atoms/6.022x10^23 atom/mol = 2.04 mol H20
Because other people cannot see what you are sending to somebody
Answer:
2.77 mL of boiling water is the minimum amount which will dissolve 500 mg of phthalic acid.
Explanation:
We know from the problem that 18 g of phthalic acid are dissolved in 100 mL of water at 99 °C.
Now we devise the following reasoning:
If 18 g of phthalic acid are dissolved in 100 mL of water at 99 °C
Then 0.5 g of phthalic acid are dissolved in X mL of water at 99 °C
X = (0.5 × 100) / 18 = 2.77 mL of water
increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
Explanation:
The concentration of NO at equilibrium will increase when the reaction takes place at a higher temperature because increasing the temperature shifts the equilibrium in the direction of the reaction in which heat is absorbed.
The reaction is an endothermic reaction.
N₂ + O₂ + heat ⇄ 2NO
According to Le Chatelier's principle, "if any of the conditions of a system in equilibrium is changed the system will adjust itself in order to annul the effect of the change".
- In an endothermic reaction, heat is usually absorbed.
- We see that in the backward reaction, heat is absorbed.
- If the temperature of this reaction is increased, the backward reaction is favored more.
- Since the reactants are combining better, more products NO results.
learn more:
Thermodynamics of reactions brainly.com/question/10567109
#learnwithBrainly
What is the relationship between wavelength, frequency and energy? The energy of a wave is directly proportional to its frequency, but inversely proportional to its wavelength. In other words, the greater the energy, the larger the frequency and the shorter (smaller) the wavelength.