Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.
Two things that store chemical energy are coal, and wood cause when you have a fire you have to get the chemicals from somewhere to keep your fire live.
Yes: water can exist in solid (ice), liquid (water), and gas (water vapor) forms.
Answer:

Explanation:
Step 1: Given data
- Molarity of the HF solution (M): 0.500 M
- Volume of the solution (V): 750.0 mL
Step 2: Convert "V" to liters
We will use the conversion factor 1 L = 1000 mL.
750.0 mL × 1 L/1000 mL = 0.7500 L
Step 3: Calculate the moles of HF
We will use the following expression.
n = M × V
n = 0.500 mol/L × 0.7500 L = 0.375 mol
Step 4: Calculate the atoms of F in 0.375 moles of HF
We will use the following relationships:
- 1 mole of HF contains 1 mole of atoms of F.
- 1 mole of atoms of F contains 6.02 × 10²³ atoms of F (Avogadro's number).

Here are the answers:
Tools that magnify object are the following: Telescope, microscope, binoculars and magnifying glass
Tools that don't magnify are the following: ruler, radio dish, and streak plate wind vane
Hope this answers your question. Have a great day ahead!