The inner planets are usually rocky because the gravitational pull is stronger closer to the star or in this case the sun. The dust and rocky particles that are left over after a super nova or in a nebula will tend to orbit closer to a proto-star when a solar system is in its early days. In our solar system these planets are Mercury, Venus, Earth and Mars. Gases are less dense and will be less affected by the pull of gravity because rocky particles have more mass. The outer planets are gas giants formed from clouds of gas that would be further out in the spinning disk around a proto-star.
The period of any wave is the time it takes for its angle
to go from zero to 2pi .
The 'sin' function is a wave. The angle of this one is (8pi t).
When t=0, the angle is zero.
Wonderful.
Now, how long does it take for the angle to grow to 2pi ?
I*n other words, when is (8pi t) = 2pi ?
Divide each side by '2pi': . . . . . 4 t = 1
Divide each side by ' 4 ': . . . . . t = 1/4
And there you are. Every time 't' grows by 1/4, (8pi t) grows by 2pi.
So if you graph this simple harmonic motion described by 'd', you'll
see the graph wiggle up and down with a period of 1/4 .
Piper rockelle and I just got off the phone number
Answer:1.Air, 2.the ground,3.water
Explanation:I just got it right:)
Answer: Heat Energy
Explanation:
Heat is energy in its most disordered form. heat energy is the random jostling of molecules and is therefore not organized. As cells perform the chemical reactions that generate order within, some energy is inevitably lost in the form of heat. Because the cell is not an isolated system, the heat energy produced by the cell is quickly dispersed into the cell's surroundings where it increases the intensity of the thermal motions of nearby molecules. This increases the entropy of the cell's environment and keeps the cell from violating the second law of thermodynamics.